Module thunderfish.efield
Simulations of spatial electric fields.
Electric monopoles
For simulating the spatial geometry of electric fields generated by electric fishes and perturbed by objects, first generate monopoles and charges:
efish_monopoles(): monopoles for simulating the electric field of an electric fish.object_monopoles(): monopoles for simulating a circular object.
Potential, electric field, and field lines
epotential(): simulation of electric field potentials.epotential_meshgrid(): simulation of electric field potentials on a mesh grid.efield(): simulation of electric field.efield_meshgrid(): simulation of electric field on a mesh grid.projection(): projection of electric field on surface normals.fieldline(): compute an electric field line.
Visualization
squareroot_transform(): square-root transformation keeping the sign.plot_fieldlines(): plot field lines with arrows.
Functions
def efish_monopoles(pos=(0, 0), direction=(1, 0), size=10.0, bend=0, nneg=1)-
Expand source code
def efish_monopoles(pos=(0, 0), direction=(1, 0), size=10.0, bend=0, nneg=1): """Monopoles for simulating the electric field of an electric fish. This implements the model published in Chen, House, Krahe, Nelson (2005) "Modeling signal and background components of electrosensory scenes", J Comp Physiol A 191: 331-345 Ten monopoles per unit size are uniformly distributed along the fish's body axis. The first (tail) nneg monopoles get negative charges that equal in sum the sum of the positive unit charges of the remaining (head) monopoles. The strength of the dipole increases linearly with fish size. Pass the returned monopole positions and charges on to the epotential() function to simulate the resulting electric field potentials, to the efield() function to simulate the electric field, or to object_monopoles() to add an object. Parameters ---------- pos: tuple of floats Coordinates of the fish's position (its center). The number of elements in pos set the number of dimensions to be used. direction: tuple of floats Coordinates of a vector defining the orientation of the fish. Missing dimensions are filled in with zeros. Note: currently only rotations in the x-y plane are implemented. size: float Size of the fish. Per size unit 10 monopols are distributed along the fish's body axis. bend: float Bending angle of the fish's tail in degree. nneg: int Number of negative charges to be used. The remaining ones are positively charged. Returns ------- poles: 2D array of floats Positions of the monopoles with n-dimensional coordinates as specified by the number of elements in pos. charges: array of floats The charge of each monopole. Example ------- ``` fish1 = ((-8, -5), (1, 0.5), 18.0, -25) poles1 = efish_monopoles(*fish1) ``` """ n = int(10*size) npos = n - nneg ppx = 0.1 pos = np.asarray(pos) dirv = np.zeros(len(pos)) dirv[:len(direction)] = direction charges = np.ones(n) charges[:nneg] = -float(npos)/nneg poles = np.zeros((n, len(pos))) poles[:,0] = np.arange(-n//2, -n//2+n)*ppx if np.abs(bend) > 1.e-8: xm = -np.min(poles[:,0]) # tip of fish tail r = -180.0*xm/bend/np.pi # radius of circle on which to bend the tail xp = poles[poles[:,0]<0.0,0] # all negative x coordinates of poles beta = xp/r # angle on circle for each x coordinate poles[poles[:,0]<0.0,0] = -np.abs(r*np.sin(beta)) # transformed x coordinates poles[poles[:,0]<0.0,1] = r*(1.0-np.cos(beta)) # transformed y corrdinates # rotation matrix: theta = -np.arctan2(dirv[1], dirv[0]) c = np.cos(theta) s = np.sin(theta) rm = np.array(((c, -s), (s, c))) # rotation: poles[:,:2] = np.dot(poles[:,:2], rm) # translation: poles += pos return poles, chargesMonopoles for simulating the electric field of an electric fish.
This implements the model published in Chen, House, Krahe, Nelson (2005) "Modeling signal and background components of electrosensory scenes", J Comp Physiol A 191: 331-345
Ten monopoles per unit size are uniformly distributed along the fish's body axis. The first (tail) nneg monopoles get negative charges that equal in sum the sum of the positive unit charges of the remaining (head) monopoles. The strength of the dipole increases linearly with fish size.
Pass the returned monopole positions and charges on to the epotential() function to simulate the resulting electric field potentials, to the efield() function to simulate the electric field, or to object_monopoles() to add an object.
Parameters
pos:tupleoffloats- Coordinates of the fish's position (its center). The number of elements in pos set the number of dimensions to be used.
direction:tupleoffloats- Coordinates of a vector defining the orientation of the fish. Missing dimensions are filled in with zeros. Note: currently only rotations in the x-y plane are implemented.
size:float- Size of the fish. Per size unit 10 monopols are distributed along the fish's body axis.
bend:float- Bending angle of the fish's tail in degree.
nneg:int- Number of negative charges to be used. The remaining ones are positively charged.
Returns
poles:2D arrayoffloats- Positions of the monopoles with n-dimensional coordinates as specified by the number of elements in pos.
charges:arrayoffloats- The charge of each monopole.
Example
fish1 = ((-8, -5), (1, 0.5), 18.0, -25) poles1 = efish_monopoles(*fish1) def object_monopoles(pos=(0, 0), radius=1.0, chi=1.0, *args)-
Expand source code
def object_monopoles(pos=(0, 0), radius=1.0, chi=1.0, *args): """Monopoles for simulating a circular object. The circular object is approximated by an induced dipole, as sugested by Rasnow B (1996) "The effects of simple objects on the electric field of Apteronotus", J Comp Physiol A 178:397-411 and Chen, House, Krahe, Nelson (2005) "Modeling signal and background components of electrosensory scenes", J Comp Physiol A 191: 331-345. Pass the returned monopole positions and charges on to the epotential() function to simulate the resulting electric field potentials or to the efield() function to simulate the electric field. Two monopoles with charges q and -q separated by dx form a dipole with dipole moment p = q dx. According to Chen et al (2005), this dipole moment should equal chi*radius**3*E_obj, where E_obj is the electric field generated by the fishes at the position of the object. We normalize E_obj and multiply it with a small number eps to get dx. Accordingly, we have to set q to chi*radius**3 |E_obj|/eps. Parameters ---------- pos: tuple of floats Coordinates of the fish's position (its center). The number of dimensions must be the same as the one of the poles passed on in args. radius: float Radius of the small circular object. chi: float Electrical contrast. Unity for a perfect conductor, -0.5 for a perfect insulator and zero if the electrical impedance of the sphere matches that of the surrounding water. args: list of tuples Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats) of electric fish. Use efish_monopoles() to generate monopoles and corresponding charges. Returns ------- poles: 2D array of floats Positions of the monopoles. charges: array of floats The charge of each monopole. Example ------- ``` fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) poles3 = object_monopoles((-6, 0), 1.0, -0.5, poles1, poles2) ``` """ eps = 0.1 # distance of the two monopoles pos = np.asarray(pos) # electric field at object position: eobj = efield(pos, *args) eobjnorm = np.linalg.norm(eobj) # induced dipole: charges = np.ones(2)*chi*radius**3*eobjnorm/eps charges[0] = -charges[0] poles = np.zeros((2, len(pos))) poles[0,:] = -eobj*0.5*eps/eobjnorm # distance between monopoles poles[1,:] = +eobj*0.5*eps/eobjnorm # distance between monopoles poles += pos # translation to required position return poles, chargesMonopoles for simulating a circular object.
The circular object is approximated by an induced dipole, as sugested by Rasnow B (1996) "The effects of simple objects on the electric field of Apteronotus", J Comp Physiol A 178:397-411 and Chen, House, Krahe, Nelson (2005) "Modeling signal and background components of electrosensory scenes", J Comp Physiol A 191: 331-345.
Pass the returned monopole positions and charges on to the epotential() function to simulate the resulting electric field potentials or to the efield() function to simulate the electric field.
Two monopoles with charges q and -q separated by dx form a dipole with dipole moment p = q dx. According to Chen et al (2005), this dipole moment should equal chiradius3E_obj, where E_obj is the electric field generated by the fishes at the position of the object. We normalize E_obj and multiply it with a small number eps to get dx. Accordingly, we have to set q to chiradius*3 |E_obj|/eps.
Parameters
pos:tupleoffloats- Coordinates of the fish's position (its center). The number of dimensions must be the same as the one of the poles passed on in args.
radius:float- Radius of the small circular object.
chi:float- Electrical contrast. Unity for a perfect conductor, -0.5 for a perfect insulator and zero if the electrical impedance of the sphere matches that of the surrounding water.
args:listoftuples- Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats) of electric fish. Use efish_monopoles() to generate monopoles and corresponding charges.
Returns
poles:2D arrayoffloats- Positions of the monopoles.
charges:arrayoffloats- The charge of each monopole.
Example
fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) poles3 = object_monopoles((-6, 0), 1.0, -0.5, poles1, poles2) def epotential(pos, *args)-
Expand source code
def epotential(pos, *args): """Simulation of electric field potentials. Parameters ---------- pos: 2D array of floats Each row contains the coordinates (2D or 3D) for which the potential should be computed. args: list of tuples Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges. Returns ------- pot: 1D array of float The potential for each position in `pos`. """ pos = np.asarray(pos) pot = np.zeros(len(pos)) for poles, charges in args: for p, c in zip(poles, charges): r = pos - p rnorm = np.linalg.norm(r, axis=1) rnorm[np.abs(rnorm) < 1e-12] = 1.0e-12 pot += c/rnorm return potSimulation of electric field potentials.
Parameters
pos:2D arrayoffloats- Each row contains the coordinates (2D or 3D) for which the potential should be computed.
args:listoftuples- Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges.
Returns
pot:1D arrayoffloat- The potential for each position in
pos.
def epotential_meshgrid(xx, yy, zz, *args)-
Expand source code
def epotential_meshgrid(xx, yy, zz, *args): """Simulation of electric field potentials on a mesh grid. This is a simple wrapper for epotential(). Parameters ---------- xx: 2D array of floats Range of x coordinates as returned by numpy.meshgrid(). yy: 2D array of floats Range of y coordinates as returned by numpy.meshgrid(). zz: None or 2D array of floats z coordinates on the meshgrid defined by xx and yy. If provided, poles in args must be 3D. If None then treat it as a 2D problem with poles in args providing 2D coordinate. args: list of tuples Each tuple contains as the first argument the position (2D or 3D) of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges. Returns ------- pot: 2D array of floats The potential for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz). Example ------- ``` fig, ax = plt.subplots() maxx = 30.0 maxy = 27.0 x = np.linspace(-maxx, maxx, 200) y = np.linspace(-maxy, maxy, 200) xx, yy = np.meshgrid(x, y) fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) poles3 = object_monopoles((-6, 0), 1.0, -0.5, poles1, poles2) allpoles = (poles1, poles2, poles3) # potential: pot = epotential_meshgrid(xx, yy, None, *allpoles) thresh = 0.65 zz = squareroot_transform(pot/200, thresh) levels = np.linspace(-thresh, thresh, 16) ax.contourf(x, y, -zz, levels, cmap='RdYlBu') ax.contour(x, y, -zz, levels, zorder=1, colors='#707070', linewidths=0.1, linestyles='solid') plt.show() ``` """ pos = np.vstack((xx.ravel(), yy.ravel())).T pot = epotential(pos, *args) return pot.reshape(xx.shape)Simulation of electric field potentials on a mesh grid.
This is a simple wrapper for epotential().
Parameters
xx:2D arrayoffloats- Range of x coordinates as returned by numpy.meshgrid().
yy:2D arrayoffloats- Range of y coordinates as returned by numpy.meshgrid().
zz:Noneor2D arrayoffloats- z coordinates on the meshgrid defined by xx and yy. If provided, poles in args must be 3D. If None then treat it as a 2D problem with poles in args providing 2D coordinate.
args:listoftuples- Each tuple contains as the first argument the position (2D or 3D) of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges.
Returns
pot:2D arrayoffloats- The potential for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz).
Example
fig, ax = plt.subplots() maxx = 30.0 maxy = 27.0 x = np.linspace(-maxx, maxx, 200) y = np.linspace(-maxy, maxy, 200) xx, yy = np.meshgrid(x, y) fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) poles3 = object_monopoles((-6, 0), 1.0, -0.5, poles1, poles2) allpoles = (poles1, poles2, poles3) # potential: pot = epotential_meshgrid(xx, yy, None, *allpoles) thresh = 0.65 zz = squareroot_transform(pot/200, thresh) levels = np.linspace(-thresh, thresh, 16) ax.contourf(x, y, -zz, levels, cmap='RdYlBu') ax.contour(x, y, -zz, levels, zorder=1, colors='#707070', linewidths=0.1, linestyles='solid') plt.show() def efield(pos, *args)-
Expand source code
def efield(pos, *args): """Simulation of electric field given a set of electric monopoles. Parameters ---------- pos: array of floats Each row contains the coordinates (2D or 3D) for which the potential should be computed. A single (1D) position is also accepted. args: list of tuples Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges. Returns ------- field: array of floats The electric field components for each position in `pos`. """ pos = np.asarray(pos) onedim = len(pos.shape) == 1 if onedim: pos = pos.reshape(-1, len(pos)) field = np.zeros(pos.shape) for poles, charges in args: for p, c in zip(poles, charges): r = pos - p rnorm = np.linalg.norm(r, axis=1) rnorm[np.abs(rnorm) < 1e-12] = 1.0e-12 fac = c/rnorm**3 field += r*fac[:,np.newaxis] return field[0] if onedim else fieldSimulation of electric field given a set of electric monopoles.
Parameters
pos:arrayoffloats- Each row contains the coordinates (2D or 3D) for which the potential should be computed. A single (1D) position is also accepted.
args:listoftuples- Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges.
Returns
field:arrayoffloats- The electric field components for each position in
pos.
def efield_meshgrid(xx, yy, zz, *args)-
Expand source code
def efield_meshgrid(xx, yy, zz, *args): """Simulation of electric field on a mesh grid. This is a simple wrapper for efield(). Parameters ---------- xx: 2D array of floats Range of x coordinates as returned by numpy.meshgrid(). yy: 2D array of floats Range of y coordinates as returned by numpy.meshgrid(). zz: None or 2D array of floats z coordinates on the meshgrid defined by xx and yy. If provided, poles in args must be 3D. If None then treat it as a 2D problem with poles in args providing 2D coordinate. args: list of tuples Each tuple contains as the first argument the position (2D or 3D) of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges. Returns ------- pot: 2D array of floats The potential for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz). Returns ------- fieldx: 2D array of floats The x-coordinate of the electric field for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz). fieldy: 2D array of floats The y-coordinate of the electric field for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz). fieldz: 2D array of floats The z-coordinate of the electric field for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz). This is only returned if zz is not None. Example ------- ``` fig, ax = plt.subplots() maxx = 30.0 maxy = 27.0 x = np.linspace(-maxx, maxx, 40) y = np.linspace(-maxy, maxy, 40) xx, yy = np.meshgrid(x, y) fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) poles3 = object_monopoles((-6, 0), 1.0, -0.5, poles1, poles2) allpoles = (poles1, poles2, poles3) fieldx, fieldy = efield_meshgrid(xx, yy, None, *allpoles) u = squareroot_transform(fieldx, 0) v = squareroot_transform(fieldy, 0) ax.quiver(qx, qy, u, v, units='xy', angles='uv', scale=2, scale_units='xy', width=0.07, headwidth=5) ``` """ if zz is None: pos = np.vstack((xx.ravel(), yy.ravel())).T ef = efield(pos, *args) return ef[:,0].reshape(xx.shape), ef[:,1].reshape(xx.shape) else: pos = np.vstack((xx.ravel(), yy.ravel(), zz.ravel())).T ef = efield(pos, *args) return ef[:,0].reshape(xx.shape), ef[:,1].reshape(xx.shape), ef[:,2].reshape(xx.shape)Simulation of electric field on a mesh grid.
This is a simple wrapper for efield().
Parameters
xx:2D arrayoffloats- Range of x coordinates as returned by numpy.meshgrid().
yy:2D arrayoffloats- Range of y coordinates as returned by numpy.meshgrid().
zz:Noneor2D arrayoffloats- z coordinates on the meshgrid defined by xx and yy. If provided, poles in args must be 3D. If None then treat it as a 2D problem with poles in args providing 2D coordinate.
args:listoftuples- Each tuple contains as the first argument the position (2D or 3D) of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges.
Returns
pot:2D arrayoffloats- The potential for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz).
Returns
fieldx:2D arrayoffloats- The x-coordinate of the electric field for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz).
fieldy:2D arrayoffloats- The y-coordinate of the electric field for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz).
fieldz:2D arrayoffloats- The z-coordinate of the electric field for the mesh grid defined by xx and yy and evaluated at (xx, yy, zz). This is only returned if zz is not None.
Example
fig, ax = plt.subplots() maxx = 30.0 maxy = 27.0 x = np.linspace(-maxx, maxx, 40) y = np.linspace(-maxy, maxy, 40) xx, yy = np.meshgrid(x, y) fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) poles3 = object_monopoles((-6, 0), 1.0, -0.5, poles1, poles2) allpoles = (poles1, poles2, poles3) fieldx, fieldy = efield_meshgrid(xx, yy, None, *allpoles) u = squareroot_transform(fieldx, 0) v = squareroot_transform(fieldy, 0) ax.quiver(qx, qy, u, v, units='xy', angles='uv', scale=2, scale_units='xy', width=0.07, headwidth=5) def projection(ex, ey, ez, nx, ny, nz)-
Expand source code
def projection(ex, ey, ez, nx, ny, nz): """Projection of electric field on surface normals. Parameters ---------- ex: array of floats x-coordinates of the electric field. ey: array of floats y-coordinates of the electric field. ez: array of floats z-coordinates of the electric field. nx: array of floats x-coordinates of the surface normals. ny: array of floats y-coordinates of the surface normals. nz: array of floats z-coordinates of the surface normals. """ ef = np.vstack((ex.ravel(), ey.ravel(), ez.ravel())).T nf = np.vstack((nx.ravel(), ny.ravel(), nz.ravel())).T proj = np.sum(ef*nf, axis=1) return proj.reshape(ex.shape)Projection of electric field on surface normals.
Parameters
ex:arrayoffloats- x-coordinates of the electric field.
ey:arrayoffloats- y-coordinates of the electric field.
ez:arrayoffloats- z-coordinates of the electric field.
nx:arrayoffloats- x-coordinates of the surface normals.
ny:arrayoffloats- y-coordinates of the surface normals.
nz:arrayoffloats- z-coordinates of the surface normals.
def fieldline(pos0, bounds, *args, eps=0.1, maxiter=1000)-
Expand source code
def fieldline(pos0, bounds, *args, eps=0.1, maxiter=1000): """Compute an electric field line. From the initial position `pos0` the field line is computed in both directions until it leaves the area defined by `bounds`. Parameters ---------- pos0: array of floats Initial position for computing the field line. bounds: None or 2D array of floats If not None, stop integration of the field line if it exceeds bounds. First row are the minimum coordinates and second row the maximum coordinates. args: list of tuples Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges. eps: float Stepsize in unit of the coordinates. maxiter: int Maximum number of iteration steps. Returns ------- fl: 2D array of floats Coordinates of the computed field line. Example ------- ``` fig, ax = plt.subplots() fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) fl = fieldline((0, -16), [[-maxx, -maxy], [maxx, maxy]], poles1, poles2) plot_fieldlines(ax, [fl], 5, color='b', lw=2) plt.show() ``` """ bounds = np.asarray(bounds) p = np.array(pos0) n = maxiter//2 # forward integration: flf = np.zeros((n, len(pos0))) for i in range(len(flf)): flf[i,:] = p if np.any(p < bounds[0,:]) or np.any(p > bounds[1,:]) or (bounds is not None and i >= 5 and np.all((flf[i,:] - flf[i-1,:])*(flf[i-1,:] - flf[i-2,:])<0)): flf = flf[:i,:] break uv = efield(p, *args) uv /= np.linalg.norm(uv) p = p + eps*uv # backward integration: p = np.array(pos0) flb = np.zeros((n, len(pos0))) for i in range(len(flb)): flb[i,:] = p if np.any(p < bounds[0,:]) or np.any(p > bounds[1,:]) or (bounds is not None and i >= 5 and np.all((flb[i,:] - flb[i-1,:])*(flb[i-1,:] - flb[i-2,:])<0)): flb = flb[:i,:] break uv = efield(p, *args) uv /= np.linalg.norm(uv) p = p - eps*uv fl = np.vstack((flb[::-2], flf[::2])) return flCompute an electric field line.
From the initial position
pos0the field line is computed in both directions until it leaves the area defined bybounds.Parameters
pos0:arrayoffloats- Initial position for computing the field line.
bounds:Noneor2D arrayoffloats- If not None, stop integration of the field line if it exceeds bounds. First row are the minimum coordinates and second row the maximum coordinates.
args:listoftuples- Each tuple contains as the first argument the position of monopoles (2D array of floats), and as the second argument the corresponding charges (array of floats). Use efish_monopoles() to generate monopoles and corresponding charges.
eps:float- Stepsize in unit of the coordinates.
maxiter:int- Maximum number of iteration steps.
Returns
fl:2D arrayoffloats- Coordinates of the computed field line.
Example
fig, ax = plt.subplots() fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) fl = fieldline((0, -16), [[-maxx, -maxy], [maxx, maxy]], poles1, poles2) plot_fieldlines(ax, [fl], 5, color='b', lw=2) plt.show() def squareroot_transform(values, thresh=0.0)-
Expand source code
def squareroot_transform(values, thresh=0.0): """Square-root transformation keeping the sign. Takes the square root of positive values and takes the square root of the absolute values of negative values and negates the results. Then truncate symmetrically both positive and negative values to a threshold. The resulting transformed values give nice contour lines in a contour plot. Parameters ---------- values: array of float The values to be transformed, i.e. potentials or field strengths. thresh: float or None Maximum absolute value of the returned values. Must be positive! If thresh equals zero, then do not apply treshold. If None, take the smaller of the maximum of the positive values or of the absolute negative values. Returns ------- values: array of float The transformed (square-rooted and thresholded) values. """ values = np.array(values) sel = values>=0.0 values[sel] = values[sel]**0.5 values[np.logical_not(sel)] = -((-values[np.logical_not(sel)])**0.5) if thresh is None: thresh = min(np.max(values), -np.min(values)) if thresh > 0: values[values>thresh] = thresh values[values<-thresh] = -thresh return valuesSquare-root transformation keeping the sign.
Takes the square root of positive values and takes the square root of the absolute values of negative values and negates the results.
Then truncate symmetrically both positive and negative values to a threshold.
The resulting transformed values give nice contour lines in a contour plot.
Parameters
values:arrayoffloat- The values to be transformed, i.e. potentials or field strengths.
thresh:floatorNone- Maximum absolute value of the returned values. Must be positive! If thresh equals zero, then do not apply treshold. If None, take the smaller of the maximum of the positive values or of the absolute negative values.
Returns
values:arrayoffloat- The transformed (square-rooted and thresholded) values.
def plot_fieldlines(ax, flines, pos=5, **kwargs)-
Expand source code
def plot_fieldlines(ax, flines, pos=5, **kwargs): """Plot field lines with arrows. Parameters ---------- ax: matplotlib axes Axes in which to plot the field lines. flines: list of 2D arrays The field lines. pos: float The position of the arrow on the field line in units of the coordinates. **kwargs: key word arguments Passed on to plot(). Applies optional zorder argument also to arrow. """ xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() dx = 0.05*np.abs(xmax-xmin) dy = 0.05*np.abs(ymax-ymin) akwargs = dict() if 'zorder' in kwargs: akwargs['zorder'] = kwargs['zorder'] lw = 1 if 'lw' in kwargs: lw = kwargs['lw'] if 'linewidth' in kwargs: lw = kwargs['linewidth'] for fl in flines: ax.plot(fl[:,0], fl[:,1], **kwargs) # arrows: d = np.diff(fl, axis=0) dd = np.linalg.norm(d, axis=1) dist = np.cumsum(dd) if dist[-1] >= 6: idx0 = np.argmin(np.abs(dist-pos)) if (np.abs(fl[0,0]-xmin)<dx or np.abs(fl[0,0]-xmax)<dx or np.abs(fl[0,1]-ymin)<dy or np.abs(fl[0,1]-ymax)<dy): idx0 = np.argmin(np.abs(dist[-1]-dist-pos)) idx1 = np.argmin(np.abs(dist-0.5*dist[-1])) idx = min(idx0, idx1) adx = fl[idx+1,:] - fl[idx,:] ndx = np.linalg.norm(adx) if ndx < 1e-10: continue adx /= ndx posa = fl[idx+1,:] - 0.1*min(dx,dy)*adx posb = fl[idx+1,:] arrow = FancyArrowPatch(posA=posa, posB=posb, shrinkA=0, shrinkB=0, arrowstyle='fancy', mutation_scale=8*lw, connectionstyle='arc3', fill=True, color=kwargs['color'], **akwargs) ax.add_patch(arrow)Plot field lines with arrows.
Parameters
ax:matplotlib axes- Axes in which to plot the field lines.
flines:listof2D arrays- The field lines.
pos:float- The position of the arrow on the field line in units of the coordinates.
**kwargs:key word arguments- Passed on to plot(). Applies optional zorder argument also to arrow.
def main()-
Expand source code
def main(): fig, ax = plt.subplots() maxx = 30.0 maxy = 27.0 x = np.linspace(-maxx, maxx, 200) y = np.linspace(-maxy, maxy, 200) xx, yy = np.meshgrid(x, y) fish1 = ((-8, -5), (1, 0.5), 18.0, -25) fish2 = ((12, 3), (0.8, 1), 20.0, 20) poles1 = efish_monopoles(*fish1) poles2 = efish_monopoles(*fish2) poles3 = object_monopoles((-6, 0), 1.0, -0.5, poles1, poles2) allpoles = (poles1, poles2, poles3) # potential: pot = epotential_meshgrid(xx, yy, None, *allpoles) thresh = 0.65 zz = squareroot_transform(pot/200, thresh) levels = np.linspace(-thresh, thresh, 16) ax.contourf(x, y, -zz, levels, cmap='RdYlBu') ax.contour(x, y, -zz, levels, zorder=1, colors='#707070', linewidths=0.1, linestyles='solid') # electric field vectors: n = 5 qx, qy = np.meshgrid(x[n::2*n], y[n::2*n]) fieldx, fieldy = efield_meshgrid(qx, qy, None, *allpoles) u = squareroot_transform(fieldx, 0) v = squareroot_transform(fieldy, 0) ax.quiver(qx, qy, u, v, units='xy', angles='uv', scale=2, scale_units='xy', width=0.07, headwidth=5) # field line: bounds = [[-maxx, -maxy], [maxx, maxy]] fl = fieldline((0, -16), bounds, *allpoles) plot_fieldlines(ax, [fl], 5, color='b', lw=2) plt.show()