Module thunderfish.fakefish
Simulate EOD waveforms.
Species names
species_name
: translate species ids to full species names.abbrv_genus()
: abbreviate genus in a species name.
Wavefish
wavefish_spectrum()
: amplitudes and phases of a wavefish EOD.wavefish_eods()
: simulate EOD waveform of a wave-type fish.normalize_wavefish()
: normalize amplitudes and phases of EOD wave-type waveform.export_wavefish()
: serialize wavefish parameter to file.chirps()
: simulate frequency trace with chirps.rises()
: simulate frequency trace with rises.
Pulsefish
pulsefish_eods()
: simulate EOD waveform of a pulse-type fish.normalize_pulsefish()
: normalize times and stdevs of pulse-type EOD waveform.export_pulsefish()
: serialize pulsefish parameter to file.
Interactive waveform generation
generate_waveform()
: interactively generate audio file with simulated EOD waveforms.
Expand source code
"""Simulate EOD waveforms.
## Species names
- `species_name`: translate species ids to full species names.
- `abbrv_genus()`: abbreviate genus in a species name.
## Wavefish
- `wavefish_spectrum()`: amplitudes and phases of a wavefish EOD.
- `wavefish_eods()`: simulate EOD waveform of a wave-type fish.
- `normalize_wavefish()`: normalize amplitudes and phases of EOD wave-type waveform.
- `export_wavefish()`: serialize wavefish parameter to file.
- `chirps()`: simulate frequency trace with chirps.
- `rises()`: simulate frequency trace with rises.
## Pulsefish
- `pulsefish_eods()`: simulate EOD waveform of a pulse-type fish.
- `normalize_pulsefish()`: normalize times and stdevs of pulse-type EOD waveform.
- `export_pulsefish()`: serialize pulsefish parameter to file.
## Interactive waveform generation
- `generate_waveform()`: interactively generate audio file with simulated EOD waveforms.
"""
import sys
import numpy as np
species_name = dict(Sine='Sinewave',
Alepto='Apteronotus leptorhynchus',
Arostratus='Apteronotus rostratus',
Eigenmannia='Eigenmannia spec.',
Sternarchella='Sternarchella terminalis',
Sternopygus='Sternopygus dariensis')
"""Translate species ids used by wavefish_harmonics and pulsefish_eodpeaks to full species names.
"""
def abbrv_genus(name):
"""Abbreviate genus in a species name.
Parameters
----------
name: string
Full species name of the form 'Genus species subspecies'
Returns
-------
name: string
The species name with abbreviated genus, i.e. 'G. species subspecies'
"""
ns = name.split()
return ns[0][0] + '. ' + ' '.join(ns[1:])
# Amplitudes and phases of various wavefish species:
Sine_harmonics = dict(amplitudes=(1.0,), phases=(0.5*np.pi,))
Apteronotus_leptorhynchus_harmonics = \
dict(amplitudes=(0.90062, 0.15311, 0.072049, 0.012609, 0.011708),
phases=(1.3623, 2.3246, 0.9869, 2.6492, -2.6885))
Apteronotus_rostratus_harmonics = \
dict(amplitudes=(0.64707, 0.43874, 0.063592, 0.07379, 0.040199, 0.023073,
0.0097678),
phases=(2.2988, 0.78876, -1.316, 2.2416, 2.0413, 1.1022,
-2.0513))
Eigenmannia_harmonics = \
dict(amplitudes=(1.0087, 0.23201, 0.060524, 0.020175, 0.010087, 0.0080699),
phases=(1.3414, 1.3228, 2.9242, 2.8157, 2.6871, -2.8415))
Sternarchella_terminalis_harmonics = \
dict(amplitudes=(0.11457, 0.4401, 0.41055, 0.20132, 0.061364, 0.011389,
0.0057985),
phases=(-2.7106, 2.4472, 1.6829, 0.79085, 0.119, -0.82355,
-1.9956))
Sternopygus_dariensis_harmonics = \
dict(amplitudes=(0.98843, 0.41228, 0.047848, 0.11048, 0.022801, 0.030706,
0.019018),
phases=(1.4153, 1.3141, 3.1062, -2.3961, -1.9524, 0.54321,
1.6844))
wavefish_harmonics = dict(Sine=Sine_harmonics,
Alepto=Apteronotus_leptorhynchus_harmonics,
Arostratus=Apteronotus_rostratus_harmonics,
Eigenmannia=Eigenmannia_harmonics,
Sternarchella=Sternarchella_terminalis_harmonics,
Sternopygus=Sternopygus_dariensis_harmonics)
"""Amplitudes and phases of EOD waveforms of various species of wave-type electric fish."""
def wavefish_spectrum(fish):
"""Amplitudes and phases of a wavefish EOD.
Parameters
----------
fish: string, dict or tuple of lists/arrays
Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the `wavefish_harmonics` dictionary.
If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys.
If tuple then the first element is the list of amplitudes and
the second one the list of relative phases in radians.
Returns
-------
amplitudes: array of floats
Amplitudes of the fundamental and its harmonics.
phases: array of floats
Phases in radians of the fundamental and its harmonics.
Raises
------
KeyError:
Unknown fish.
IndexError:
Amplitudes and phases differ in length.
"""
if isinstance(fish, (tuple, list)):
amplitudes = fish[0]
phases = fish[1]
elif isinstance(fish, dict):
amplitudes = fish['amplitudes']
phases = fish['phases']
else:
if not fish in wavefish_harmonics:
raise KeyError('unknown wavefish. Choose one of ' +
', '.join(wavefish_harmonics.keys()))
amplitudes = wavefish_harmonics[fish]['amplitudes']
phases = wavefish_harmonics[fish]['phases']
if len(amplitudes) != len(phases):
raise IndexError('need exactly as many phases as amplitudes')
# remove NaNs:
for k in reversed(range(len(amplitudes))):
if np.isfinite(amplitudes[k]) or np.isfinite(phases[k]):
amplitudes = amplitudes[:k+1]
phases = phases[:k+1]
break
return amplitudes, phases
def wavefish_eods(fish='Eigenmannia', frequency=100.0, samplerate=44100.0,
duration=1.0, phase0=0.0, noise_std=0.05):
"""Simulate EOD waveform of a wave-type fish.
The waveform is constructed by superimposing sinewaves of integral
multiples of the fundamental frequency - the fundamental and its
harmonics. The fundamental frequency of the EOD (EODf) is given by
`frequency`. With `fish` relative amplitudes and phases of the
fundamental and its harmonics are specified.
The generated waveform is `duration` seconds long and is sampled with
`samplerate` Hertz. Gaussian white noise with a standard deviation of
`noise_std` is added to the generated waveform.
Parameters
----------
fish: string, dict or tuple of lists/arrays
Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the `wavefish_harmonics` dictionary.
If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys.
If tuple then the first element is the list of amplitudes and
the second one the list of relative phases in radians.
frequency: float or array of floats
EOD frequency of the fish in Hertz. Either fixed number or array for
time-dependent frequencies.
samplerate: float
Sampling rate in Hertz.
duration: float
Duration of the generated data in seconds. Only used if frequency is scalar.
phase0: float
Phase offset of the EOD waveform in radians.
noise_std: float
Standard deviation of additive Gaussian white noise.
Returns
-------
data: array of floats
Generated data of a wave-type fish.
Raises
------
KeyError:
Unknown fish.
IndexError:
Amplitudes and phases differ in length.
"""
# get relative amplitude and phases:
amplitudes, phases = wavefish_spectrum(fish)
# compute phase:
if np.isscalar(frequency):
phase = np.arange(0, duration, 1.0/samplerate)
phase *= frequency
else:
phase = np.cumsum(frequency)/samplerate
# generate EOD:
data = np.zeros(len(phase))
for har, (ampl, phi) in enumerate(zip(amplitudes, phases)):
if np.isfinite(ampl) and np.isfinite(phi):
data += ampl * np.sin(2*np.pi*(har+1)*phase + phi - (har+1)*phase0)
# add noise:
data += noise_std * np.random.randn(len(data))
return data
def normalize_wavefish(fish, mode='peak'):
"""Normalize amplitudes and phases of wave-type EOD waveform.
The amplitudes and phases of the Fourier components are adjusted
such that the resulting EOD waveform has a peak-to-peak amplitude
of two and the peak of the waveform is at time zero (mode is set
to 'peak') or that the fundamental has an amplitude of one and a
phase of 0 (mode is set to 'zero').
Parameters
----------
fish: string, dict or tuple of lists/arrays
Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the `wavefish_harmonics` dictionary.
If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys.
If tuple then the first element is the list of amplitudes and
the second one the list of relative phases in radians.
mode: 'peak' or 'zero'
How to normalize amplitude and phases:
- 'peak': normalize waveform to a peak-to-peak amplitude of two
and shift it such that its peak is at time zero.
- 'zero': scale amplitude of fundamental to one and its phase to zero.
Returns
-------
amplitudes: array of floats
Adjusted amplitudes of the fundamental and its harmonics.
phases: array of floats
Adjusted phases in radians of the fundamental and its harmonics.
"""
# get relative amplitude and phases:
amplitudes, phases = wavefish_spectrum(fish)
if mode == 'zero':
newamplitudes = np.array(amplitudes)/amplitudes[0]
newphases = np.array([p+(k+1)*(-phases[0]) for k, p in enumerate(phases)])
newphases %= 2.0*np.pi
newphases[newphases>np.pi] -= 2.0*np.pi
return newamplitudes, newphases
else:
# generate waveform:
eodf = 100.0
rate = 100000.0
data = wavefish_eods(fish, eodf, rate, 2.0/eodf, noise_std=0.0)
# normalize amplitudes:
ampl = 0.5*(np.max(data) - np.min(data))
newamplitudes = np.array(amplitudes)/ampl
# shift phases:
deltat = np.argmax(data[:int(rate/eodf)])/rate
deltap = 2.0*np.pi*deltat*eodf
newphases = np.array([p+(k+1)*deltap for k, p in enumerate(phases)])
newphases %= 2.0*np.pi
newphases[newphases>np.pi] -= 2.0*np.pi
# return:
return newamplitudes, newphases
def export_wavefish(fish, name='Unknown_harmonics', file=None):
"""Serialize wavefish parameter to python code.
Add output to the wavefish_harmonics dictionary!
Parameters
----------
fish: string, dict or tuple of lists/arrays
Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the `wavefish_harmonics` dictionary.
If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys.
If tuple then the first element is the list of amplitudes and
the second one the list of relative phases in radians.
name: string
Name of the dictionary to be written.
file: string or file or None
File name or open file object where to write wavefish dictionary.
Returns
-------
fish: dict
Dictionary with amplitudes and phases.
"""
# get relative amplitude and phases:
amplitudes, phases = wavefish_spectrum(fish)
# write out dictionary:
if file is None:
file = sys.stdout
try:
file.write('')
closeit = False
except AttributeError:
file = open(file, 'w')
closeit = True
n = 6
file.write(name + ' = \\\n')
file.write(' dict(amplitudes=(')
file.write(', '.join([f'{a:.5g}' for a in amplitudes[:n]]))
for k in range(n, len(amplitudes), n):
file.write(',\n')
file.write(' ' * (9+12))
file.write(', '.join([f'{a:.5g}' for a in amplitudes[k:k+n]]))
file.write('),\n')
file.write(' ' * 9 + 'phases=(')
file.write(', '.join(['{p:.5g}' for p in phases[:n]]))
for k in range(n, len(phases), n):
file.write(',\n')
file.write(' ' * (9+8))
file.write(', '.join([f'{p:.5g}' for p in phases[k:k+n]]))
file.write('))\n')
if closeit:
file.close()
# return dictionary:
harmonics = dict(amplitudes=amplitudes,
phases=phases)
return harmonics
def chirps(eodf=100.0, samplerate=44100.0, duration=1.0, chirp_freq=5.0,
chirp_size=100.0, chirp_width=0.01, chirp_kurtosis=1.0, chirp_contrast=0.05):
"""Simulate frequency trace with chirps.
A chirp is modeled as a Gaussian frequency modulation.
The first chirp is placed at 0.5/chirp_freq.
Parameters
----------
eodf: float
EOD frequency of the fish in Hertz.
samplerate: float
Sampling rate in Hertz.
duration: float
Duration of the generated data in seconds.
chirp_freq: float
Frequency of occurance of chirps in Hertz.
chirp_size: float
Size of the chirp (maximum frequency increase above eodf) in Hertz.
chirp_width: float
Width of the chirp at 10% height in seconds.
chirp_kurtosis: float:
Shape of the chirp. =1: Gaussian, >1: more rectangular, <1: more peaked.
chirp_contrast: float
Maximum amplitude reduction of EOD during chirp.
Returns
-------
frequency: array of floats
Generated frequency trace that can be passed on to wavefish_eods().
amplitude: array of floats
Generated amplitude modulation that can be used to multiply the trace generated by
wavefish_eods().
"""
# baseline eod frequency and amplitude modulation:
n = len(np.arange(0, duration, 1.0/samplerate))
frequency = eodf * np.ones(n)
am = np.ones(n)
# time points for chirps:
chirp_period = 1.0/chirp_freq
chirp_times = np.arange(0.5*chirp_period, duration, chirp_period)
# chirp frequency waveform:
chirp_t = np.arange(-2.0*chirp_width, 2.0*chirp_width, 1./samplerate)
chirp_sig = 0.5*chirp_width / (2.0*np.log(10.0))**(0.5/chirp_kurtosis)
gauss = np.exp(-0.5*((chirp_t/chirp_sig)**2.0)**chirp_kurtosis)
# add chirps on baseline eodf:
for ct in chirp_times:
index = int(ct*samplerate)
i0 = index - len(gauss)//2
i1 = i0 + len(gauss)
gi0 = 0
gi1 = len(gauss)
if i0 < 0:
gi0 -= i0
i0 = 0
if i1 >= len(frequency):
gi1 -= i1 - len(frequency)
i1 = len(frequency)
frequency[i0:i1] += chirp_size * gauss[gi0:gi1]
am[i0:i1] -= chirp_contrast * gauss[gi0:gi1]
return frequency, am
def rises(eodf=100.0, samplerate=44100.0, duration=1.0, rise_freq=0.1,
rise_size=10.0, rise_tau=1.0, decay_tau=10.0):
"""Simulate frequency trace with rises.
A rise is modeled as a double exponential frequency modulation.
Parameters
----------
eodf: float
EOD frequency of the fish in Hertz.
samplerate: float
Sampling rate in Hertz.
duration: float
Duration of the generated data in seconds.
rise_freq: float
Frequency of occurance of rises in Hertz.
rise_size: float
Size of the rise (frequency increase above eodf) in Hertz.
rise_tau: float
Time constant of the frequency increase of the rise in seconds.
decay_tau: float
Time constant of the frequency decay of the rise in seconds.
Returns
-------
data: array of floats
Generated frequency trace that can be passed on to wavefish_eods().
"""
n = len(np.arange(0, duration, 1.0/samplerate))
# baseline eod frequency:
frequency = eodf * np.ones(n)
# time points for rises:
rise_period = 1.0/rise_freq
rise_times = np.arange(0.5*rise_period, duration, rise_period)
# rise frequency waveform:
rise_t = np.arange(0.0, 5.0*decay_tau, 1./samplerate)
rise = rise_size * (1.0-np.exp(-rise_t/rise_tau)) * np.exp(-rise_t/decay_tau)
# add rises on baseline eodf:
for r in rise_times:
index = int(r*samplerate)
if index+len(rise) > len(frequency):
rise_index = len(frequency)-index
frequency[index:index+rise_index] += rise[:rise_index]
break
else:
frequency[index:index+len(rise)] += rise
return frequency
# Positions, amplitudes and standard deviations of peaks of various pulsefish species:
Monophasic_peaks = \
dict(times=(0,),
amplitudes=(1,),
stdevs=(0.0003,))
Biphasic_peaks = \
dict(times=(9e-05, 0.00049),
amplitudes=(1.1922, -0.95374),
stdevs=(0.0003, 0.00025))
Triphasic_peaks = \
dict(times=(3e-05, 0.00018, 0.00043),
amplitudes=(1.2382, -0.9906, 0.12382),
stdevs=(0.0001, 0.0001, 0.0002))
pulsefish_eodpeaks = dict(Monophasic=Monophasic_peaks,
Biphasic=Biphasic_peaks,
Triphasic=Triphasic_peaks)
"""Standard deviations, amplitudes and positions of Gaussians that
make up EOD waveforms of pulse-type electric fish.
"""
def pulsefish_peaks(fish):
"""Position, amplitudes and standard deviations of peaks in pulsefish EOD waveforms.
Parameters
----------
fish: string, dict or tuple of floats/lists/arrays
Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the `pulsefish_eodpeaks` dictionary.
If dictionary then take pulse properties from the 'times', 'amlitudes'
and 'stdevs' keys.
If tuple then the first element is the list of peak positions,
the second is the list of corresponding amplitudes, and
the third one the list of corresponding standard deviations.
Returns
-------
times : array of floats
Positions of the peaks.
amplitudes : array of floats
Amplitudes of the peaks.
stdevs : array of floats
Standard deviations of the peaks.
Raises
------
KeyError:
Unknown fish.
IndexError:
Peak positions, amplitudes, or standard deviations differ in length.
"""
if isinstance(fish, (tuple, list)):
peak_times = fish[0]
peak_amplitudes = fish[1]
peak_stdevs = fish[2]
elif isinstance(fish, dict):
peak_times = fish['times']
peak_amplitudes = fish['amplitudes']
peak_stdevs = fish['stdevs']
else:
if not fish in pulsefish_eodpeaks:
raise KeyError('unknown pulse-type fish. Choose one of ' +
', '.join(pulsefish_eodpeaks.keys()))
peak_times = pulsefish_eodpeaks[fish]['times']
peak_amplitudes = pulsefish_eodpeaks[fish]['amplitudes']
peak_stdevs = pulsefish_eodpeaks[fish]['stdevs']
if len(peak_stdevs) != len(peak_amplitudes) or len(peak_stdevs) != len(peak_times):
raise IndexError('need exactly as many standard deviations as amplitudes and times')
return peak_times, peak_amplitudes, peak_stdevs
def pulsefish_eods(fish='Biphasic', frequency=100.0, samplerate=44100.0,
duration=1.0, noise_std=0.01, jitter_cv=0.1,
first_pulse=None):
"""Simulate EOD waveform of a pulse-type fish.
Pulses are spaced by 1/frequency, jittered as determined by jitter_cv. Each pulse is
a combination of Gaussian peaks, whose positions, amplitudes and widths are
given by 'fish'.
The generated waveform is duration seconds long and is sampled with samplerate Hertz.
Gaussian white noise with a standard deviation of noise_std is added to the generated
pulse train.
Parameters
----------
fish: string, dict or tuple of floats/lists/arrays
Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the `pulsefish_eodpeaks` dictionary.
If dictionary then take pulse properties from the 'times', 'amlitudes'
and 'stdevs' keys.
If tuple then the first element is the list of peak positions,
the second is the list of corresponding amplitudes, and
the third one the list of corresponding standard deviations.
frequency: float
EOD frequency of the fish in Hz.
samplerate: float
Sampling Rate in Hz.
duration: float
Duration of the generated data in seconds.
noise_std: float
Standard deviation of additive Gaussian white noise.
jitter_cv: float
Gaussian distributed jitter of pulse times as coefficient of variation
of inter-pulse intervals.
first_pulse: float or None
The position of the first pulse. If None it is choosen automatically
depending on pulse width, jitter, and frequency.
Returns
-------
data: array of floats
Generated data of a pulse-type fish.
Raises
------
KeyError:
Unknown fish.
IndexError:
Peak positions, amplitudes, or standard deviations differ in length.
"""
# get peak properties:
peak_times, peak_amplitudes, peak_stdevs = pulsefish_peaks(fish)
# time axis for single pulse:
min_time_inx = np.argmin(peak_times)
max_time_inx = np.argmax(peak_times)
tmax = max(np.abs(peak_times[min_time_inx]-4.0*peak_stdevs[min_time_inx]),
np.abs(peak_times[max_time_inx]+4.0*peak_stdevs[max_time_inx]))
x = np.arange(-tmax, tmax, 1.0/samplerate)
pulse_duration = x[-1] - x[0]
# generate a single pulse:
pulse = np.zeros(len(x))
for time, ampl, std in zip(peak_times, peak_amplitudes, peak_stdevs):
pulse += ampl * np.exp(-0.5*((x-time)/std)**2)
poffs = len(pulse)//2
# paste the pulse into the noise floor:
time = np.arange(0, duration, 1.0/samplerate)
data = np.random.randn(len(time)) * noise_std
period = 1.0/frequency
jitter_std = period * jitter_cv
if first_pulse is None:
first_pulse = np.max([pulse_duration, 3.0*jitter_std])
pulse_times = np.arange(first_pulse, duration, period )
pulse_times += jitter_std*np.random.randn(len(pulse_times))
pulse_indices = np.round(pulse_times * samplerate).astype(int)
for inx in pulse_indices[(pulse_indices>=poffs)&(pulse_indices-poffs+len(pulse)<len(data))]:
data[inx-poffs:inx-poffs+len(pulse)] += pulse
return data
def normalize_pulsefish(fish):
"""Normalize times and stdevs of pulse-type EOD waveform.
The positions and amplitudes of Gaussian peaks are adjusted such
that the resulting EOD waveform has a maximum peak amplitude of one
and has the largest peak at time zero.
Parameters
----------
fish: string, dict or tuple of floats/lists/arrays
Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the `pulsefish_eodpeaks` dictionary.
If dictionary then take pulse properties from the 'times', 'amlitudes'
and 'stdevs' keys.
If tuple then the first element is the list of peak positions,
the second is the list of corresponding amplitudes, and
the third one the list of corresponding standard deviations.
Returns
-------
fish: dict
Dictionary with adjusted times and standard deviations.
"""
# get peak properties:
peak_times, peak_amplitudes, peak_stdevs = pulsefish_peaks(fish)
# generate waveform:
eodf = 10.0
rate = 100000.0
first_pulse = 0.5/eodf
data = pulsefish_eods(fish, eodf, rate, 1.0/eodf, noise_std=0.0,
jitter_cv=0.0, first_pulse=first_pulse)
# maximum peak:
idx = np.argmax(np.abs(data))
# normalize amplitudes:
ampl = data[idx]
newamplitudes = np.array(peak_amplitudes)/ampl
# shift times:
deltat = idx/rate - first_pulse
newtimes = np.array(peak_times) - deltat
# store and return:
peaks = dict(times=newtimes,
amplitudes=newamplitudes,
stdevs=peak_stdevs)
return peaks
def export_pulsefish(fish, name='Unknown_peaks', file=None):
"""Serialize pulsefish parameter to python code.
Add output to the pulsefish_eodpeaks dictionary!
Parameters
----------
fish: string, dict or tuple of floats/lists/arrays
Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the `pulsefish_eodpeaks` dictionary.
If dictionary then take pulse properties from the 'times', 'amlitudes'
and 'stdevs' keys.
If tuple then the first element is the list of peak positions,
the second is the list of corresponding amplitudes, and
the third one the list of corresponding standard deviations.
name: string
Name of the dictionary to be written.
file: string or file or None
File name or open file object where to write pulsefish dictionary.
Returns
-------
fish: dict
Dictionary with peak times, amplitudes and standard deviations.
"""
# get peak properties:
peak_times, peak_amplitudes, peak_stdevs = pulsefish_peaks(fish)
# write out dictionary:
if file is None:
file = sys.stdout
try:
file.write('')
closeit = False
except AttributeError:
file = open(file, 'w')
closeit = True
n = 6
file.write(name + ' = \\\n')
file.write(' dict(times=(')
file.write(', '.join([f'{a:.5g}' for a in peak_times[:n]]))
for k in range(n, len(peak_times), n):
file.write(',\n')
file.write(' ' * (9+12))
file.write(', '.join([f'{a:.5g}' for a in peak_times[k:k+n]]))
if len(peak_times) == 1:
file.write(',')
file.write('),\n')
file.write(' ' * 9 + 'amplitudes=(')
file.write(', '.join([f'{p:.5g}' for p in peak_amplitudes[:n]]))
for k in range(n, len(peak_amplitudes), n):
file.write(',\n')
file.write(' ' * (9+8))
file.write(', '.join([f'{p:.5g}' for p in peak_amplitudes[k:k+n]]))
if len(peak_amplitudes) == 1:
file.write(',')
file.write('),\n')
file.write(' ' * 9 + 'stdevs=(')
file.write(', '.join([f'{p:.5g}' for p in peak_stdevs[:n]]))
for k in range(n, len(peak_stdevs), n):
file.write(',\n')
file.write(' ' * (9+8))
file.write(', '.join([f'{p:.5g}' for p in peak_stdevs[k:k+n]]))
if len(peak_stdevs) == 1:
file.write(',')
file.write('))\n')
if closeit:
file.close()
# return dictionary:
peaks = dict(times=peak_times,
amplitudes=peak_amplitudes,
stdevs=peak_stdevs)
return peaks
def generate_waveform(filename):
"""Interactively generate audio file with simulated EOD waveforms.
Parameters needed to generate EOD waveforms are take from console input.
Parameters
----------
filename: string
Name of file inclusively extension (e.g. '.wav')
used to store the simulated EOD waveforms.
"""
import os
from audioio import write_audio
from thunderlab.consoleinput import read, select, save_inputs
# generate file:
samplerate = read('Sampling rate in Hz', '44100', float, 1.0)
duration = read('Duration in seconds', '10', float, 0.001)
nfish = read('Number of fish', '1', int, 1)
ndata = read('Number of electrodes', '1', int, 1)
fish_spread = 1
if ndata > 1:
fish_spread = read('Number of electrodes fish are spread over', '2', int, 1)
data = np.random.randn(int(duration*samplerate), ndata)*0.01
fish_indices = np.random.randint(ndata, size=nfish)
eodt = 'a'
eodf = 800.0
eoda = 1.0
eodsig = 'n'
pulse_jitter = 0.1
chirp_freq = 5.0
chirp_size = 100.0
chirp_width = 0.01
chirp_kurtosis = 1.0
rise_freq = 0.1
rise_size = 10.0
rise_tau = 1.0
rise_decay_tau = 10.0
for k in range(nfish):
print('')
fish = 'Fish %d: ' % (k+1)
eodt = select(fish + 'EOD type', eodt, ['a', 'e', '1', '2', '3'],
['Apteronotus', 'Eigenmannia',
'monophasic pulse', 'biphasic pulse', 'triphasic pulse'])
eodf = read(fish + 'EOD frequency in Hz', '%g'%eodf, float, 1.0, 3000.0)
eoda = read(fish + 'EOD amplitude', '%g'%eoda, float, 0.0, 10.0)
if eodt in 'ae':
eodsig = select(fish + 'Add communication signals', eodsig, ['n', 'c', 'r'],
['fixed EOD', 'chirps', 'rises'])
eodfreq = eodf
if eodsig == 'c':
chirp_freq = read('Number of chirps per second', '%g'%chirp_freq, float, 0.001)
chirp_size = read('Size of chirp in Hz', '%g'%chirp_size, float, 1.0)
chirp_width = 0.001*read('Width of chirp in ms', '%g'%(1000.0*chirp_width), float, 1.0)
eodfreq, _ = chirps(eodf, samplerate, duration,
chirp_freq, chirp_size, chirp_width, chirp_kurtosis)
elif eodsig == 'r':
rise_freq = read('Number of rises per second', '%g'%rise_freq, float, 0.00001)
rise_size = read('Size of rise in Hz', '%g'%rise_size, float, 0.01)
rise_tau = read('Time-constant of rise onset in seconds', '%g'%rise_tau, float, 0.01)
rise_decay_tau = read('Time-constant of rise decay in seconds', '%g'%rise_decay_tau, float, 0.01)
eodfreq = rises(eodf, samplerate, duration,
rise_freq, rise_size, rise_tau, rise_decay_tau)
if eodt == 'a':
fishdata = eoda*wavefish_eods('Alepto', eodfreq, samplerate, duration,
phase0=0.0, noise_std=0.0)
elif eodt == 'e':
fishdata = eoda*wavefish_eods('Eigenmannia', eodfreq, samplerate,
duration, phase0=0.0, noise_std=0.0)
else:
pulse_jitter = read(fish + 'CV of pulse jitter', '%g'%pulse_jitter, float, 0.0, 2.0)
if eodt == '1':
fishdata = eoda*pulsefish_eods('Monophasic', eodf, samplerate, duration,
jitter_cv=pulse_jitter, noise_std=0.0)
elif eodt == '2':
fishdata = eoda*pulsefish_eods('Biphasic', eodf, samplerate, duration,
jitter_cv=pulse_jitter, noise_std=0.0)
elif eodt == '3':
fishdata = eoda*pulsefish_eods('Triphasic', eodf, samplerate, duration,
jitter_cv=pulse_jitter, noise_std=0.0)
i = fish_indices[k]
for j in range(fish_spread):
data[:, (i+j)%ndata] += fishdata*(0.2**j)
maxdata = np.max(np.abs(data))
write_audio(filename, 0.9*data/maxdata, samplerate)
input_file = os.path.splitext(filename)[0] + '.inp'
save_inputs(input_file)
print(f'\nWrote fakefish data to file "{filename}".')
def demo():
import matplotlib.pyplot as plt
samplerate = 40000.0 # in Hz
duration = 10.0 # in sec
inset_len = 0.01 # in sec
inset_indices = int(inset_len*samplerate)
ws_fac = 0.1 # whitespace factor or ylim (between 0. and 1.)
# generate data:
eodf = 400.0
wavefish = wavefish_eods('Alepto', eodf, samplerate, duration, noise_std=0.02)
eodf = 650.0
wavefish += 0.5*wavefish_eods('Eigenmannia', eodf, samplerate, duration)
pulsefish = pulsefish_eods('Biphasic', 80.0, samplerate, duration,
noise_std=0.02, jitter_cv=0.1, first_pulse=inset_len/2)
time = np.arange(len(wavefish))/samplerate
fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(19, 10))
# get proper wavefish ylim
ymin = np.min(wavefish)
ymax = np.max(wavefish)
dy = ws_fac*(ymax - ymin)
ymin -= dy
ymax += dy
# complete wavefish:
ax[0][0].set_title('Wavefish')
ax[0][0].set_ylim(ymin, ymax)
ax[0][0].plot(time, wavefish)
# wavefish zoom in:
ax[0][1].set_title('Wavefish ZOOM IN')
ax[0][1].set_ylim(ymin, ymax)
ax[0][1].plot(time[:inset_indices], wavefish[:inset_indices], '-o')
# get proper pulsefish ylim
ymin = np.min(pulsefish)
ymax = np.max(pulsefish)
dy = ws_fac*(ymax - ymin)
ymin -= dy
ymax += dy
# complete pulsefish:
ax[1][0].set_title('Pulsefish')
ax[1][0].set_ylim(ymin, ymax)
ax[1][0].plot(time, pulsefish)
# pulsefish zoom in:
ax[1][1].set_title('Pulsefish ZOOM IN')
ax[1][1].set_ylim(ymin, ymax)
ax[1][1].plot(time[:inset_indices], pulsefish[:inset_indices], '-o')
for row in ax:
for c_ax in row:
c_ax.set_xlabel('Time [sec]')
c_ax.set_ylabel('Amplitude')
plt.tight_layout()
# chirps:
chirps_freq = chirps(600.0, samplerate, duration)
chirps_data = wavefish_eods('Alepto', chirps_freq, samplerate)
# rises:
rises_freq = rises(600.0, samplerate, duration, rise_size=20.0)
rises_data = wavefish_eods('Alepto', rises_freq, samplerate)
nfft = 256
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(19, 10))
ax[0].set_title('Chirps')
ax[0].specgram(chirps_data, Fs=samplerate, NFFT=nfft, noverlap=nfft//16)
time = np.arange(len(chirps_freq))/samplerate
ax[0].plot(time[:-nfft//2], chirps_freq[nfft//2:], '-k', lw=2)
ax[0].set_ylim(0.0, 3000.0)
ax[0].set_ylabel('Frequency [Hz]')
nfft = 4096
ax[1].set_title('Rises')
ax[1].specgram(rises_data, Fs=samplerate, NFFT=nfft, noverlap=nfft//2)
time = np.arange(len(rises_freq))/samplerate
ax[1].plot(time[:-nfft//4], rises_freq[nfft//4:], '-k', lw=2)
ax[1].set_ylim(500.0, 700.0)
ax[1].set_ylabel('Frequency [Hz]')
ax[1].set_xlabel('Time [s]')
plt.tight_layout()
plt.show()
def main(args=[]):
from .version import __year__
if len(args) > 0:
if len(args) == 1 or args[0] != '-s':
print('usage: fakefish [-h|--help] [-s audiofile]')
print('')
print('Without arguments, run a demo for illustrating fakefish functionality.')
print('')
print('-s audiofile: writes audiofile with user defined simulated electric fishes.')
print('')
print(f'by bendalab ({__year__})')
else:
generate_waveform(args[1])
else:
demo()
if __name__ == '__main__':
import sys
main(sys.argv[1:])
Global variables
var species_name
-
Translate species ids used by wavefish_harmonics and pulsefish_eodpeaks to full species names.
var wavefish_harmonics
-
Amplitudes and phases of EOD waveforms of various species of wave-type electric fish.
var pulsefish_eodpeaks
-
Standard deviations, amplitudes and positions of Gaussians that make up EOD waveforms of pulse-type electric fish.
Functions
def abbrv_genus(name)
-
Abbreviate genus in a species name.
Parameters
name
:string
- Full species name of the form 'Genus species subspecies'
Returns
name
:string
- The species name with abbreviated genus, i.e. 'G. species subspecies'
Expand source code
def abbrv_genus(name): """Abbreviate genus in a species name. Parameters ---------- name: string Full species name of the form 'Genus species subspecies' Returns ------- name: string The species name with abbreviated genus, i.e. 'G. species subspecies' """ ns = name.split() return ns[0][0] + '. ' + ' '.join(ns[1:])
def wavefish_spectrum(fish)
-
Amplitudes and phases of a wavefish EOD.
Parameters
fish
:string, dict
ortuple
oflists/arrays
- Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the
wavefish_harmonics
dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians.
Returns
amplitudes
:array
offloats
- Amplitudes of the fundamental and its harmonics.
phases
:array
offloats
- Phases in radians of the fundamental and its harmonics.
Raises
Keyerror
Unknown fish.
Indexerror
Amplitudes and phases differ in length.
Expand source code
def wavefish_spectrum(fish): """Amplitudes and phases of a wavefish EOD. Parameters ---------- fish: string, dict or tuple of lists/arrays Specify relative amplitudes and phases of the fundamental and its harmonics. If string then take amplitudes and phases from the `wavefish_harmonics` dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians. Returns ------- amplitudes: array of floats Amplitudes of the fundamental and its harmonics. phases: array of floats Phases in radians of the fundamental and its harmonics. Raises ------ KeyError: Unknown fish. IndexError: Amplitudes and phases differ in length. """ if isinstance(fish, (tuple, list)): amplitudes = fish[0] phases = fish[1] elif isinstance(fish, dict): amplitudes = fish['amplitudes'] phases = fish['phases'] else: if not fish in wavefish_harmonics: raise KeyError('unknown wavefish. Choose one of ' + ', '.join(wavefish_harmonics.keys())) amplitudes = wavefish_harmonics[fish]['amplitudes'] phases = wavefish_harmonics[fish]['phases'] if len(amplitudes) != len(phases): raise IndexError('need exactly as many phases as amplitudes') # remove NaNs: for k in reversed(range(len(amplitudes))): if np.isfinite(amplitudes[k]) or np.isfinite(phases[k]): amplitudes = amplitudes[:k+1] phases = phases[:k+1] break return amplitudes, phases
def wavefish_eods(fish='Eigenmannia', frequency=100.0, samplerate=44100.0, duration=1.0, phase0=0.0, noise_std=0.05)
-
Simulate EOD waveform of a wave-type fish.
The waveform is constructed by superimposing sinewaves of integral multiples of the fundamental frequency - the fundamental and its harmonics. The fundamental frequency of the EOD (EODf) is given by
frequency
. Withfish
relative amplitudes and phases of the fundamental and its harmonics are specified.The generated waveform is
duration
seconds long and is sampled withsamplerate
Hertz. Gaussian white noise with a standard deviation ofnoise_std
is added to the generated waveform.Parameters
fish
:string, dict
ortuple
oflists/arrays
- Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the
wavefish_harmonics
dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians. frequency
:float
orarray
offloats
- EOD frequency of the fish in Hertz. Either fixed number or array for time-dependent frequencies.
samplerate
:float
- Sampling rate in Hertz.
duration
:float
- Duration of the generated data in seconds. Only used if frequency is scalar.
phase0
:float
- Phase offset of the EOD waveform in radians.
noise_std
:float
- Standard deviation of additive Gaussian white noise.
Returns
data
:array
offloats
- Generated data of a wave-type fish.
Raises
Keyerror
Unknown fish.
Indexerror
Amplitudes and phases differ in length.
Expand source code
def wavefish_eods(fish='Eigenmannia', frequency=100.0, samplerate=44100.0, duration=1.0, phase0=0.0, noise_std=0.05): """Simulate EOD waveform of a wave-type fish. The waveform is constructed by superimposing sinewaves of integral multiples of the fundamental frequency - the fundamental and its harmonics. The fundamental frequency of the EOD (EODf) is given by `frequency`. With `fish` relative amplitudes and phases of the fundamental and its harmonics are specified. The generated waveform is `duration` seconds long and is sampled with `samplerate` Hertz. Gaussian white noise with a standard deviation of `noise_std` is added to the generated waveform. Parameters ---------- fish: string, dict or tuple of lists/arrays Specify relative amplitudes and phases of the fundamental and its harmonics. If string then take amplitudes and phases from the `wavefish_harmonics` dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians. frequency: float or array of floats EOD frequency of the fish in Hertz. Either fixed number or array for time-dependent frequencies. samplerate: float Sampling rate in Hertz. duration: float Duration of the generated data in seconds. Only used if frequency is scalar. phase0: float Phase offset of the EOD waveform in radians. noise_std: float Standard deviation of additive Gaussian white noise. Returns ------- data: array of floats Generated data of a wave-type fish. Raises ------ KeyError: Unknown fish. IndexError: Amplitudes and phases differ in length. """ # get relative amplitude and phases: amplitudes, phases = wavefish_spectrum(fish) # compute phase: if np.isscalar(frequency): phase = np.arange(0, duration, 1.0/samplerate) phase *= frequency else: phase = np.cumsum(frequency)/samplerate # generate EOD: data = np.zeros(len(phase)) for har, (ampl, phi) in enumerate(zip(amplitudes, phases)): if np.isfinite(ampl) and np.isfinite(phi): data += ampl * np.sin(2*np.pi*(har+1)*phase + phi - (har+1)*phase0) # add noise: data += noise_std * np.random.randn(len(data)) return data
def normalize_wavefish(fish, mode='peak')
-
Normalize amplitudes and phases of wave-type EOD waveform.
The amplitudes and phases of the Fourier components are adjusted such that the resulting EOD waveform has a peak-to-peak amplitude of two and the peak of the waveform is at time zero (mode is set to 'peak') or that the fundamental has an amplitude of one and a phase of 0 (mode is set to 'zero').
Parameters
fish
:string, dict
ortuple
oflists/arrays
- Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the
wavefish_harmonics
dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians. mode
:'peak'
or'zero'
- How to normalize amplitude and phases: - 'peak': normalize waveform to a peak-to-peak amplitude of two and shift it such that its peak is at time zero. - 'zero': scale amplitude of fundamental to one and its phase to zero.
Returns
amplitudes
:array
offloats
- Adjusted amplitudes of the fundamental and its harmonics.
phases
:array
offloats
- Adjusted phases in radians of the fundamental and its harmonics.
Expand source code
def normalize_wavefish(fish, mode='peak'): """Normalize amplitudes and phases of wave-type EOD waveform. The amplitudes and phases of the Fourier components are adjusted such that the resulting EOD waveform has a peak-to-peak amplitude of two and the peak of the waveform is at time zero (mode is set to 'peak') or that the fundamental has an amplitude of one and a phase of 0 (mode is set to 'zero'). Parameters ---------- fish: string, dict or tuple of lists/arrays Specify relative amplitudes and phases of the fundamental and its harmonics. If string then take amplitudes and phases from the `wavefish_harmonics` dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians. mode: 'peak' or 'zero' How to normalize amplitude and phases: - 'peak': normalize waveform to a peak-to-peak amplitude of two and shift it such that its peak is at time zero. - 'zero': scale amplitude of fundamental to one and its phase to zero. Returns ------- amplitudes: array of floats Adjusted amplitudes of the fundamental and its harmonics. phases: array of floats Adjusted phases in radians of the fundamental and its harmonics. """ # get relative amplitude and phases: amplitudes, phases = wavefish_spectrum(fish) if mode == 'zero': newamplitudes = np.array(amplitudes)/amplitudes[0] newphases = np.array([p+(k+1)*(-phases[0]) for k, p in enumerate(phases)]) newphases %= 2.0*np.pi newphases[newphases>np.pi] -= 2.0*np.pi return newamplitudes, newphases else: # generate waveform: eodf = 100.0 rate = 100000.0 data = wavefish_eods(fish, eodf, rate, 2.0/eodf, noise_std=0.0) # normalize amplitudes: ampl = 0.5*(np.max(data) - np.min(data)) newamplitudes = np.array(amplitudes)/ampl # shift phases: deltat = np.argmax(data[:int(rate/eodf)])/rate deltap = 2.0*np.pi*deltat*eodf newphases = np.array([p+(k+1)*deltap for k, p in enumerate(phases)]) newphases %= 2.0*np.pi newphases[newphases>np.pi] -= 2.0*np.pi # return: return newamplitudes, newphases
def export_wavefish(fish, name='Unknown_harmonics', file=None)
-
Serialize wavefish parameter to python code.
Add output to the wavefish_harmonics dictionary!
Parameters
fish
:string, dict
ortuple
oflists/arrays
- Specify relative amplitudes and phases of the fundamental and its harmonics.
If string then take amplitudes and phases from the
wavefish_harmonics
dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians. name
:string
- Name of the dictionary to be written.
file
:string
orfile
orNone
- File name or open file object where to write wavefish dictionary.
Returns
fish
:dict
- Dictionary with amplitudes and phases.
Expand source code
def export_wavefish(fish, name='Unknown_harmonics', file=None): """Serialize wavefish parameter to python code. Add output to the wavefish_harmonics dictionary! Parameters ---------- fish: string, dict or tuple of lists/arrays Specify relative amplitudes and phases of the fundamental and its harmonics. If string then take amplitudes and phases from the `wavefish_harmonics` dictionary. If dictionary then take amplitudes and phases from the 'amlitudes' and 'phases' keys. If tuple then the first element is the list of amplitudes and the second one the list of relative phases in radians. name: string Name of the dictionary to be written. file: string or file or None File name or open file object where to write wavefish dictionary. Returns ------- fish: dict Dictionary with amplitudes and phases. """ # get relative amplitude and phases: amplitudes, phases = wavefish_spectrum(fish) # write out dictionary: if file is None: file = sys.stdout try: file.write('') closeit = False except AttributeError: file = open(file, 'w') closeit = True n = 6 file.write(name + ' = \\\n') file.write(' dict(amplitudes=(') file.write(', '.join([f'{a:.5g}' for a in amplitudes[:n]])) for k in range(n, len(amplitudes), n): file.write(',\n') file.write(' ' * (9+12)) file.write(', '.join([f'{a:.5g}' for a in amplitudes[k:k+n]])) file.write('),\n') file.write(' ' * 9 + 'phases=(') file.write(', '.join(['{p:.5g}' for p in phases[:n]])) for k in range(n, len(phases), n): file.write(',\n') file.write(' ' * (9+8)) file.write(', '.join([f'{p:.5g}' for p in phases[k:k+n]])) file.write('))\n') if closeit: file.close() # return dictionary: harmonics = dict(amplitudes=amplitudes, phases=phases) return harmonics
def chirps(eodf=100.0, samplerate=44100.0, duration=1.0, chirp_freq=5.0, chirp_size=100.0, chirp_width=0.01, chirp_kurtosis=1.0, chirp_contrast=0.05)
-
Simulate frequency trace with chirps.
A chirp is modeled as a Gaussian frequency modulation. The first chirp is placed at 0.5/chirp_freq.
Parameters
eodf
:float
- EOD frequency of the fish in Hertz.
samplerate
:float
- Sampling rate in Hertz.
duration
:float
- Duration of the generated data in seconds.
chirp_freq
:float
- Frequency of occurance of chirps in Hertz.
chirp_size
:float
- Size of the chirp (maximum frequency increase above eodf) in Hertz.
chirp_width
:float
- Width of the chirp at 10% height in seconds.
chirp_kurtosis
:float:
- Shape of the chirp. =1: Gaussian, >1: more rectangular, <1: more peaked.
chirp_contrast
:float
- Maximum amplitude reduction of EOD during chirp.
Returns
frequency
:array
offloats
- Generated frequency trace that can be passed on to wavefish_eods().
amplitude
:array
offloats
- Generated amplitude modulation that can be used to multiply the trace generated by wavefish_eods().
Expand source code
def chirps(eodf=100.0, samplerate=44100.0, duration=1.0, chirp_freq=5.0, chirp_size=100.0, chirp_width=0.01, chirp_kurtosis=1.0, chirp_contrast=0.05): """Simulate frequency trace with chirps. A chirp is modeled as a Gaussian frequency modulation. The first chirp is placed at 0.5/chirp_freq. Parameters ---------- eodf: float EOD frequency of the fish in Hertz. samplerate: float Sampling rate in Hertz. duration: float Duration of the generated data in seconds. chirp_freq: float Frequency of occurance of chirps in Hertz. chirp_size: float Size of the chirp (maximum frequency increase above eodf) in Hertz. chirp_width: float Width of the chirp at 10% height in seconds. chirp_kurtosis: float: Shape of the chirp. =1: Gaussian, >1: more rectangular, <1: more peaked. chirp_contrast: float Maximum amplitude reduction of EOD during chirp. Returns ------- frequency: array of floats Generated frequency trace that can be passed on to wavefish_eods(). amplitude: array of floats Generated amplitude modulation that can be used to multiply the trace generated by wavefish_eods(). """ # baseline eod frequency and amplitude modulation: n = len(np.arange(0, duration, 1.0/samplerate)) frequency = eodf * np.ones(n) am = np.ones(n) # time points for chirps: chirp_period = 1.0/chirp_freq chirp_times = np.arange(0.5*chirp_period, duration, chirp_period) # chirp frequency waveform: chirp_t = np.arange(-2.0*chirp_width, 2.0*chirp_width, 1./samplerate) chirp_sig = 0.5*chirp_width / (2.0*np.log(10.0))**(0.5/chirp_kurtosis) gauss = np.exp(-0.5*((chirp_t/chirp_sig)**2.0)**chirp_kurtosis) # add chirps on baseline eodf: for ct in chirp_times: index = int(ct*samplerate) i0 = index - len(gauss)//2 i1 = i0 + len(gauss) gi0 = 0 gi1 = len(gauss) if i0 < 0: gi0 -= i0 i0 = 0 if i1 >= len(frequency): gi1 -= i1 - len(frequency) i1 = len(frequency) frequency[i0:i1] += chirp_size * gauss[gi0:gi1] am[i0:i1] -= chirp_contrast * gauss[gi0:gi1] return frequency, am
def rises(eodf=100.0, samplerate=44100.0, duration=1.0, rise_freq=0.1, rise_size=10.0, rise_tau=1.0, decay_tau=10.0)
-
Simulate frequency trace with rises.
A rise is modeled as a double exponential frequency modulation.
Parameters
eodf
:float
- EOD frequency of the fish in Hertz.
samplerate
:float
- Sampling rate in Hertz.
duration
:float
- Duration of the generated data in seconds.
rise_freq
:float
- Frequency of occurance of rises in Hertz.
rise_size
:float
- Size of the rise (frequency increase above eodf) in Hertz.
rise_tau
:float
- Time constant of the frequency increase of the rise in seconds.
decay_tau
:float
- Time constant of the frequency decay of the rise in seconds.
Returns
data
:array
offloats
- Generated frequency trace that can be passed on to wavefish_eods().
Expand source code
def rises(eodf=100.0, samplerate=44100.0, duration=1.0, rise_freq=0.1, rise_size=10.0, rise_tau=1.0, decay_tau=10.0): """Simulate frequency trace with rises. A rise is modeled as a double exponential frequency modulation. Parameters ---------- eodf: float EOD frequency of the fish in Hertz. samplerate: float Sampling rate in Hertz. duration: float Duration of the generated data in seconds. rise_freq: float Frequency of occurance of rises in Hertz. rise_size: float Size of the rise (frequency increase above eodf) in Hertz. rise_tau: float Time constant of the frequency increase of the rise in seconds. decay_tau: float Time constant of the frequency decay of the rise in seconds. Returns ------- data: array of floats Generated frequency trace that can be passed on to wavefish_eods(). """ n = len(np.arange(0, duration, 1.0/samplerate)) # baseline eod frequency: frequency = eodf * np.ones(n) # time points for rises: rise_period = 1.0/rise_freq rise_times = np.arange(0.5*rise_period, duration, rise_period) # rise frequency waveform: rise_t = np.arange(0.0, 5.0*decay_tau, 1./samplerate) rise = rise_size * (1.0-np.exp(-rise_t/rise_tau)) * np.exp(-rise_t/decay_tau) # add rises on baseline eodf: for r in rise_times: index = int(r*samplerate) if index+len(rise) > len(frequency): rise_index = len(frequency)-index frequency[index:index+rise_index] += rise[:rise_index] break else: frequency[index:index+len(rise)] += rise return frequency
def pulsefish_peaks(fish)
-
Position, amplitudes and standard deviations of peaks in pulsefish EOD waveforms.
Parameters
fish
:string, dict
ortuple
offloats/lists/arrays
- Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the
pulsefish_eodpeaks
dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations.
Returns
times
:array
offloats
- Positions of the peaks.
amplitudes
:array
offloats
- Amplitudes of the peaks.
stdevs
:array
offloats
- Standard deviations of the peaks.
Raises
Keyerror
Unknown fish.
Indexerror
Peak positions, amplitudes, or standard deviations differ in length.
Expand source code
def pulsefish_peaks(fish): """Position, amplitudes and standard deviations of peaks in pulsefish EOD waveforms. Parameters ---------- fish: string, dict or tuple of floats/lists/arrays Specify positions, amplitudes and standard deviations Gaussians peaks that are superimposed to simulate EOD waveforms of pulse-type electric fishes. If string then take positions, amplitudes and standard deviations from the `pulsefish_eodpeaks` dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations. Returns ------- times : array of floats Positions of the peaks. amplitudes : array of floats Amplitudes of the peaks. stdevs : array of floats Standard deviations of the peaks. Raises ------ KeyError: Unknown fish. IndexError: Peak positions, amplitudes, or standard deviations differ in length. """ if isinstance(fish, (tuple, list)): peak_times = fish[0] peak_amplitudes = fish[1] peak_stdevs = fish[2] elif isinstance(fish, dict): peak_times = fish['times'] peak_amplitudes = fish['amplitudes'] peak_stdevs = fish['stdevs'] else: if not fish in pulsefish_eodpeaks: raise KeyError('unknown pulse-type fish. Choose one of ' + ', '.join(pulsefish_eodpeaks.keys())) peak_times = pulsefish_eodpeaks[fish]['times'] peak_amplitudes = pulsefish_eodpeaks[fish]['amplitudes'] peak_stdevs = pulsefish_eodpeaks[fish]['stdevs'] if len(peak_stdevs) != len(peak_amplitudes) or len(peak_stdevs) != len(peak_times): raise IndexError('need exactly as many standard deviations as amplitudes and times') return peak_times, peak_amplitudes, peak_stdevs
def pulsefish_eods(fish='Biphasic', frequency=100.0, samplerate=44100.0, duration=1.0, noise_std=0.01, jitter_cv=0.1, first_pulse=None)
-
Simulate EOD waveform of a pulse-type fish.
Pulses are spaced by 1/frequency, jittered as determined by jitter_cv. Each pulse is a combination of Gaussian peaks, whose positions, amplitudes and widths are given by 'fish'.
The generated waveform is duration seconds long and is sampled with samplerate Hertz. Gaussian white noise with a standard deviation of noise_std is added to the generated pulse train.
Parameters
fish
:string, dict
ortuple
offloats/lists/arrays
- Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the
pulsefish_eodpeaks
dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations. frequency
:float
- EOD frequency of the fish in Hz.
samplerate
:float
- Sampling Rate in Hz.
duration
:float
- Duration of the generated data in seconds.
noise_std
:float
- Standard deviation of additive Gaussian white noise.
jitter_cv
:float
- Gaussian distributed jitter of pulse times as coefficient of variation of inter-pulse intervals.
first_pulse
:float
orNone
- The position of the first pulse. If None it is choosen automatically depending on pulse width, jitter, and frequency.
Returns
data
:array
offloats
- Generated data of a pulse-type fish.
Raises
Keyerror
Unknown fish.
Indexerror
Peak positions, amplitudes, or standard deviations differ in length.
Expand source code
def pulsefish_eods(fish='Biphasic', frequency=100.0, samplerate=44100.0, duration=1.0, noise_std=0.01, jitter_cv=0.1, first_pulse=None): """Simulate EOD waveform of a pulse-type fish. Pulses are spaced by 1/frequency, jittered as determined by jitter_cv. Each pulse is a combination of Gaussian peaks, whose positions, amplitudes and widths are given by 'fish'. The generated waveform is duration seconds long and is sampled with samplerate Hertz. Gaussian white noise with a standard deviation of noise_std is added to the generated pulse train. Parameters ---------- fish: string, dict or tuple of floats/lists/arrays Specify positions, amplitudes and standard deviations Gaussians peaks that are superimposed to simulate EOD waveforms of pulse-type electric fishes. If string then take positions, amplitudes and standard deviations from the `pulsefish_eodpeaks` dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations. frequency: float EOD frequency of the fish in Hz. samplerate: float Sampling Rate in Hz. duration: float Duration of the generated data in seconds. noise_std: float Standard deviation of additive Gaussian white noise. jitter_cv: float Gaussian distributed jitter of pulse times as coefficient of variation of inter-pulse intervals. first_pulse: float or None The position of the first pulse. If None it is choosen automatically depending on pulse width, jitter, and frequency. Returns ------- data: array of floats Generated data of a pulse-type fish. Raises ------ KeyError: Unknown fish. IndexError: Peak positions, amplitudes, or standard deviations differ in length. """ # get peak properties: peak_times, peak_amplitudes, peak_stdevs = pulsefish_peaks(fish) # time axis for single pulse: min_time_inx = np.argmin(peak_times) max_time_inx = np.argmax(peak_times) tmax = max(np.abs(peak_times[min_time_inx]-4.0*peak_stdevs[min_time_inx]), np.abs(peak_times[max_time_inx]+4.0*peak_stdevs[max_time_inx])) x = np.arange(-tmax, tmax, 1.0/samplerate) pulse_duration = x[-1] - x[0] # generate a single pulse: pulse = np.zeros(len(x)) for time, ampl, std in zip(peak_times, peak_amplitudes, peak_stdevs): pulse += ampl * np.exp(-0.5*((x-time)/std)**2) poffs = len(pulse)//2 # paste the pulse into the noise floor: time = np.arange(0, duration, 1.0/samplerate) data = np.random.randn(len(time)) * noise_std period = 1.0/frequency jitter_std = period * jitter_cv if first_pulse is None: first_pulse = np.max([pulse_duration, 3.0*jitter_std]) pulse_times = np.arange(first_pulse, duration, period ) pulse_times += jitter_std*np.random.randn(len(pulse_times)) pulse_indices = np.round(pulse_times * samplerate).astype(int) for inx in pulse_indices[(pulse_indices>=poffs)&(pulse_indices-poffs+len(pulse)<len(data))]: data[inx-poffs:inx-poffs+len(pulse)] += pulse return data
def normalize_pulsefish(fish)
-
Normalize times and stdevs of pulse-type EOD waveform.
The positions and amplitudes of Gaussian peaks are adjusted such that the resulting EOD waveform has a maximum peak amplitude of one and has the largest peak at time zero.
Parameters
fish
:string, dict
ortuple
offloats/lists/arrays
- Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the
pulsefish_eodpeaks
dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations.
Returns
fish
:dict
- Dictionary with adjusted times and standard deviations.
Expand source code
def normalize_pulsefish(fish): """Normalize times and stdevs of pulse-type EOD waveform. The positions and amplitudes of Gaussian peaks are adjusted such that the resulting EOD waveform has a maximum peak amplitude of one and has the largest peak at time zero. Parameters ---------- fish: string, dict or tuple of floats/lists/arrays Specify positions, amplitudes and standard deviations Gaussians peaks that are superimposed to simulate EOD waveforms of pulse-type electric fishes. If string then take positions, amplitudes and standard deviations from the `pulsefish_eodpeaks` dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations. Returns ------- fish: dict Dictionary with adjusted times and standard deviations. """ # get peak properties: peak_times, peak_amplitudes, peak_stdevs = pulsefish_peaks(fish) # generate waveform: eodf = 10.0 rate = 100000.0 first_pulse = 0.5/eodf data = pulsefish_eods(fish, eodf, rate, 1.0/eodf, noise_std=0.0, jitter_cv=0.0, first_pulse=first_pulse) # maximum peak: idx = np.argmax(np.abs(data)) # normalize amplitudes: ampl = data[idx] newamplitudes = np.array(peak_amplitudes)/ampl # shift times: deltat = idx/rate - first_pulse newtimes = np.array(peak_times) - deltat # store and return: peaks = dict(times=newtimes, amplitudes=newamplitudes, stdevs=peak_stdevs) return peaks
def export_pulsefish(fish, name='Unknown_peaks', file=None)
-
Serialize pulsefish parameter to python code.
Add output to the pulsefish_eodpeaks dictionary!
Parameters
fish
:string, dict
ortuple
offloats/lists/arrays
- Specify positions, amplitudes and standard deviations Gaussians peaks that are
superimposed to simulate EOD waveforms of pulse-type electric fishes.
If string then take positions, amplitudes and standard deviations
from the
pulsefish_eodpeaks
dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations. name
:string
- Name of the dictionary to be written.
file
:string
orfile
orNone
- File name or open file object where to write pulsefish dictionary.
Returns
fish
:dict
- Dictionary with peak times, amplitudes and standard deviations.
Expand source code
def export_pulsefish(fish, name='Unknown_peaks', file=None): """Serialize pulsefish parameter to python code. Add output to the pulsefish_eodpeaks dictionary! Parameters ---------- fish: string, dict or tuple of floats/lists/arrays Specify positions, amplitudes and standard deviations Gaussians peaks that are superimposed to simulate EOD waveforms of pulse-type electric fishes. If string then take positions, amplitudes and standard deviations from the `pulsefish_eodpeaks` dictionary. If dictionary then take pulse properties from the 'times', 'amlitudes' and 'stdevs' keys. If tuple then the first element is the list of peak positions, the second is the list of corresponding amplitudes, and the third one the list of corresponding standard deviations. name: string Name of the dictionary to be written. file: string or file or None File name or open file object where to write pulsefish dictionary. Returns ------- fish: dict Dictionary with peak times, amplitudes and standard deviations. """ # get peak properties: peak_times, peak_amplitudes, peak_stdevs = pulsefish_peaks(fish) # write out dictionary: if file is None: file = sys.stdout try: file.write('') closeit = False except AttributeError: file = open(file, 'w') closeit = True n = 6 file.write(name + ' = \\\n') file.write(' dict(times=(') file.write(', '.join([f'{a:.5g}' for a in peak_times[:n]])) for k in range(n, len(peak_times), n): file.write(',\n') file.write(' ' * (9+12)) file.write(', '.join([f'{a:.5g}' for a in peak_times[k:k+n]])) if len(peak_times) == 1: file.write(',') file.write('),\n') file.write(' ' * 9 + 'amplitudes=(') file.write(', '.join([f'{p:.5g}' for p in peak_amplitudes[:n]])) for k in range(n, len(peak_amplitudes), n): file.write(',\n') file.write(' ' * (9+8)) file.write(', '.join([f'{p:.5g}' for p in peak_amplitudes[k:k+n]])) if len(peak_amplitudes) == 1: file.write(',') file.write('),\n') file.write(' ' * 9 + 'stdevs=(') file.write(', '.join([f'{p:.5g}' for p in peak_stdevs[:n]])) for k in range(n, len(peak_stdevs), n): file.write(',\n') file.write(' ' * (9+8)) file.write(', '.join([f'{p:.5g}' for p in peak_stdevs[k:k+n]])) if len(peak_stdevs) == 1: file.write(',') file.write('))\n') if closeit: file.close() # return dictionary: peaks = dict(times=peak_times, amplitudes=peak_amplitudes, stdevs=peak_stdevs) return peaks
def generate_waveform(filename)
-
Interactively generate audio file with simulated EOD waveforms.
Parameters needed to generate EOD waveforms are take from console input.
Parameters
filename
:string
- Name of file inclusively extension (e.g. '.wav') used to store the simulated EOD waveforms.
Expand source code
def generate_waveform(filename): """Interactively generate audio file with simulated EOD waveforms. Parameters needed to generate EOD waveforms are take from console input. Parameters ---------- filename: string Name of file inclusively extension (e.g. '.wav') used to store the simulated EOD waveforms. """ import os from audioio import write_audio from thunderlab.consoleinput import read, select, save_inputs # generate file: samplerate = read('Sampling rate in Hz', '44100', float, 1.0) duration = read('Duration in seconds', '10', float, 0.001) nfish = read('Number of fish', '1', int, 1) ndata = read('Number of electrodes', '1', int, 1) fish_spread = 1 if ndata > 1: fish_spread = read('Number of electrodes fish are spread over', '2', int, 1) data = np.random.randn(int(duration*samplerate), ndata)*0.01 fish_indices = np.random.randint(ndata, size=nfish) eodt = 'a' eodf = 800.0 eoda = 1.0 eodsig = 'n' pulse_jitter = 0.1 chirp_freq = 5.0 chirp_size = 100.0 chirp_width = 0.01 chirp_kurtosis = 1.0 rise_freq = 0.1 rise_size = 10.0 rise_tau = 1.0 rise_decay_tau = 10.0 for k in range(nfish): print('') fish = 'Fish %d: ' % (k+1) eodt = select(fish + 'EOD type', eodt, ['a', 'e', '1', '2', '3'], ['Apteronotus', 'Eigenmannia', 'monophasic pulse', 'biphasic pulse', 'triphasic pulse']) eodf = read(fish + 'EOD frequency in Hz', '%g'%eodf, float, 1.0, 3000.0) eoda = read(fish + 'EOD amplitude', '%g'%eoda, float, 0.0, 10.0) if eodt in 'ae': eodsig = select(fish + 'Add communication signals', eodsig, ['n', 'c', 'r'], ['fixed EOD', 'chirps', 'rises']) eodfreq = eodf if eodsig == 'c': chirp_freq = read('Number of chirps per second', '%g'%chirp_freq, float, 0.001) chirp_size = read('Size of chirp in Hz', '%g'%chirp_size, float, 1.0) chirp_width = 0.001*read('Width of chirp in ms', '%g'%(1000.0*chirp_width), float, 1.0) eodfreq, _ = chirps(eodf, samplerate, duration, chirp_freq, chirp_size, chirp_width, chirp_kurtosis) elif eodsig == 'r': rise_freq = read('Number of rises per second', '%g'%rise_freq, float, 0.00001) rise_size = read('Size of rise in Hz', '%g'%rise_size, float, 0.01) rise_tau = read('Time-constant of rise onset in seconds', '%g'%rise_tau, float, 0.01) rise_decay_tau = read('Time-constant of rise decay in seconds', '%g'%rise_decay_tau, float, 0.01) eodfreq = rises(eodf, samplerate, duration, rise_freq, rise_size, rise_tau, rise_decay_tau) if eodt == 'a': fishdata = eoda*wavefish_eods('Alepto', eodfreq, samplerate, duration, phase0=0.0, noise_std=0.0) elif eodt == 'e': fishdata = eoda*wavefish_eods('Eigenmannia', eodfreq, samplerate, duration, phase0=0.0, noise_std=0.0) else: pulse_jitter = read(fish + 'CV of pulse jitter', '%g'%pulse_jitter, float, 0.0, 2.0) if eodt == '1': fishdata = eoda*pulsefish_eods('Monophasic', eodf, samplerate, duration, jitter_cv=pulse_jitter, noise_std=0.0) elif eodt == '2': fishdata = eoda*pulsefish_eods('Biphasic', eodf, samplerate, duration, jitter_cv=pulse_jitter, noise_std=0.0) elif eodt == '3': fishdata = eoda*pulsefish_eods('Triphasic', eodf, samplerate, duration, jitter_cv=pulse_jitter, noise_std=0.0) i = fish_indices[k] for j in range(fish_spread): data[:, (i+j)%ndata] += fishdata*(0.2**j) maxdata = np.max(np.abs(data)) write_audio(filename, 0.9*data/maxdata, samplerate) input_file = os.path.splitext(filename)[0] + '.inp' save_inputs(input_file) print(f'\nWrote fakefish data to file "{filename}".')
def demo()
-
Expand source code
def demo(): import matplotlib.pyplot as plt samplerate = 40000.0 # in Hz duration = 10.0 # in sec inset_len = 0.01 # in sec inset_indices = int(inset_len*samplerate) ws_fac = 0.1 # whitespace factor or ylim (between 0. and 1.) # generate data: eodf = 400.0 wavefish = wavefish_eods('Alepto', eodf, samplerate, duration, noise_std=0.02) eodf = 650.0 wavefish += 0.5*wavefish_eods('Eigenmannia', eodf, samplerate, duration) pulsefish = pulsefish_eods('Biphasic', 80.0, samplerate, duration, noise_std=0.02, jitter_cv=0.1, first_pulse=inset_len/2) time = np.arange(len(wavefish))/samplerate fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(19, 10)) # get proper wavefish ylim ymin = np.min(wavefish) ymax = np.max(wavefish) dy = ws_fac*(ymax - ymin) ymin -= dy ymax += dy # complete wavefish: ax[0][0].set_title('Wavefish') ax[0][0].set_ylim(ymin, ymax) ax[0][0].plot(time, wavefish) # wavefish zoom in: ax[0][1].set_title('Wavefish ZOOM IN') ax[0][1].set_ylim(ymin, ymax) ax[0][1].plot(time[:inset_indices], wavefish[:inset_indices], '-o') # get proper pulsefish ylim ymin = np.min(pulsefish) ymax = np.max(pulsefish) dy = ws_fac*(ymax - ymin) ymin -= dy ymax += dy # complete pulsefish: ax[1][0].set_title('Pulsefish') ax[1][0].set_ylim(ymin, ymax) ax[1][0].plot(time, pulsefish) # pulsefish zoom in: ax[1][1].set_title('Pulsefish ZOOM IN') ax[1][1].set_ylim(ymin, ymax) ax[1][1].plot(time[:inset_indices], pulsefish[:inset_indices], '-o') for row in ax: for c_ax in row: c_ax.set_xlabel('Time [sec]') c_ax.set_ylabel('Amplitude') plt.tight_layout() # chirps: chirps_freq = chirps(600.0, samplerate, duration) chirps_data = wavefish_eods('Alepto', chirps_freq, samplerate) # rises: rises_freq = rises(600.0, samplerate, duration, rise_size=20.0) rises_data = wavefish_eods('Alepto', rises_freq, samplerate) nfft = 256 fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(19, 10)) ax[0].set_title('Chirps') ax[0].specgram(chirps_data, Fs=samplerate, NFFT=nfft, noverlap=nfft//16) time = np.arange(len(chirps_freq))/samplerate ax[0].plot(time[:-nfft//2], chirps_freq[nfft//2:], '-k', lw=2) ax[0].set_ylim(0.0, 3000.0) ax[0].set_ylabel('Frequency [Hz]') nfft = 4096 ax[1].set_title('Rises') ax[1].specgram(rises_data, Fs=samplerate, NFFT=nfft, noverlap=nfft//2) time = np.arange(len(rises_freq))/samplerate ax[1].plot(time[:-nfft//4], rises_freq[nfft//4:], '-k', lw=2) ax[1].set_ylim(500.0, 700.0) ax[1].set_ylabel('Frequency [Hz]') ax[1].set_xlabel('Time [s]') plt.tight_layout() plt.show()
def main(args=[])
-
Expand source code
def main(args=[]): from .version import __year__ if len(args) > 0: if len(args) == 1 or args[0] != '-s': print('usage: fakefish [-h|--help] [-s audiofile]') print('') print('Without arguments, run a demo for illustrating fakefish functionality.') print('') print('-s audiofile: writes audiofile with user defined simulated electric fishes.') print('') print(f'by bendalab ({__year__})') else: generate_waveform(args[1]) else: demo()