Module thunderfish.fishfinder

Expand source code
import sys
import os
import warnings
import argparse
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as ml
from audioio import PlayAudio, fade, write_audio
from thunderlab.configfile import ConfigFile
from thunderlab.dataloader import DataLoader
from thunderlab.powerspectrum import nfft, decibel, psd, spectrogram
from thunderlab.powerspectrum import add_multi_psd_config, multi_psd_args
from .version import __version__, __year__
from .harmonics import harmonic_groups, harmonic_groups_args, psd_peak_detection_args
from .harmonics import add_psd_peak_detection_config, add_harmonic_groups_config, colors_markers
from .bestwindow import clip_amplitudes, clip_args, best_window_indices
from .bestwindow import best_window_args
from .thunderfish import configuration, save_configuration
# check: import logging https://docs.python.org/2/howto/logging.html#logging-basic-tutorial


class SignalPlot:
    def __init__(self, data, samplingrate, unit, filename, channel, verbose, cfg):
        self.filename = filename
        self.channel = channel
        self.samplerate = samplingrate
        self.data = data
        self.unit = unit
        self.cfg = cfg
        self.verbose = verbose
        self.tmax = (len(self.data)-1)/self.samplerate
        self.toffset = 0.0
        self.twindow = 8.0
        if self.twindow > self.tmax:
            self.twindow = np.round(2 ** (np.floor(np.log(self.tmax) / np.log(2.0)) + 1.0))
        self.ymin = -1.0
        self.ymax = +1.0
        self.trace_artist = None
        self.spectrogram_artist = None
        self.fmin = 0.0
        self.fmax = 0.0
        self.decibel = True
        self.freq_resolution = self.cfg.value('frequencyResolution')
        self.deltaf = 1.0
        self.mains_freq = self.cfg.value('mainsFreq')
        self.power_label = None
        self.all_peaks_artis = None
        self.good_peaks_artist = None
        self.power_artist = None
        self.power_frequency_label = None
        self.peak_artists = []
        self.legend = True
        self.legendhandle = None
        self.help = False
        self.helptext = []
        self.allpeaks = []
        self.fishlist = []
        self.mains = []
        self.peak_specmarker = []
        self.peak_annotation = []
        self.min_clip = self.cfg.value('minClipAmplitude')
        self.max_clip = self.cfg.value('maxClipAmplitude')
        self.colorrange, self.markerrange = colors_markers()

        # audio output:
        self.audio = PlayAudio()
        
        # set key bindings:
        plt.rcParams['keymap.fullscreen'] = 'ctrl+f'
        plt.rcParams['keymap.pan'] = 'ctrl+m'
        plt.rcParams['keymap.quit'] = 'ctrl+w, alt+q, q'
        plt.rcParams['keymap.yscale'] = ''
        plt.rcParams['keymap.xscale'] = ''
        plt.rcParams['keymap.grid'] = ''
        #plt.rcParams['keymap.all_axes'] = ''

        # the figure:
        plt.ioff()
        self.fig = plt.figure(figsize=(15, 9))
        self.fig.canvas.manager.set_window_title(self.filename + ' channel {0:d}'.format(self.channel))
        self.fig.canvas.mpl_connect('key_press_event', self.keypress)
        self.fig.canvas.mpl_connect('button_press_event', self.buttonpress)
        self.fig.canvas.mpl_connect('pick_event', self.onpick)
        self.fig.canvas.mpl_connect('resize_event', self.resize)
        # trace plot:
        self.axt = self.fig.add_axes([0.1, 0.7, 0.87, 0.25])
        self.axt.set_ylabel('Amplitude [{:s}]'.format(self.unit))
        ht = self.axt.text(0.98, 0.05, '(ctrl+) page and arrow up, down, home, end: scroll', ha='right',
                           transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.15, '+, -, X, x: zoom in/out', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.25, 'y,Y,v,V: zoom amplitudes', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.35, 'p,P: play audio (display,all)', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.45, 'ctrl-f: full screen', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.55, 'w: plot waveform into png file', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.65, 's: save figure', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.75, 'S: save audiosegment', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.85, 'q: quit', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.95, 'h: toggle this help', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        self.axt.set_xticklabels([])
        # spectrogram:
        self.axs = self.fig.add_axes([0.1, 0.45, 0.87, 0.25])
        self.axs.set_xlabel('Time [seconds]')
        self.axs.set_ylabel('Frequency [Hz]')
        # power spectrum:
        self.axp = self.fig.add_axes([0.1, 0.1, 0.87, 0.25])
        ht = self.axp.text(0.98, 0.9, 'r, R: frequency resolution', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.8, 'f, F: zoom', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.7, '(ctrl+) left, right: move', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.6, 'l: toggle legend', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.5, 'd: toggle decibel', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.4, 'm: toggle mains filter', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.3, 'left mouse: show peak properties', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.2, 'shift/ctrl + left/right mouse: goto previous/next harmonic', ha='right',
                           transform=self.axp.transAxes)
        self.helptext.append(ht)
        # plot:
        for ht in self.helptext:
            ht.set_visible(self.help)
        self.update_plots(False)
        plt.show()

    def __del__(self):
        self.audio.close()

    def remove_peak_annotation(self):
        for fm in self.peak_specmarker:
            fm.remove()
        self.peak_specmarker = []
        for fa in self.peak_annotation:
            fa.remove()
        self.peak_annotation = []

    def annotate_peak(self, peak, harmonics=-1, inx=-1):
        # marker:
        if inx >= 0:
            m, = self.axs.plot([self.toffset + 0.01 * self.twindow], [peak[0]], linestyle='None',
                               color=self.colorrange[inx % len(self.colorrange)],
                               marker=self.markerrange[inx], ms=10.0, mec=None, mew=0.0, zorder=2)
        else:
            m, = self.axs.plot([self.toffset + 0.01 * self.twindow], [peak[0]], linestyle='None',
                               color='k', marker='o', ms=10.0, mec=None, mew=0.0, zorder=2)
        self.peak_specmarker.append(m)
        # annotation:
        fwidth = self.fmax - self.fmin
        pl = []
        pl.append(r'$f=$%.1f Hz' % peak[0])
        pl.append(r'$h=$%d' % harmonics)
        pl.append(r'$p=$%g' % peak[1])
        pl.append(r'$c=$%.0f' % peak[2])
        self.peak_annotation.append(self.axp.annotate('\n'.join(pl), xy=(peak[0], peak[1]),
                                                      xytext=(peak[0] + 0.03 * fwidth, peak[1]),
                                                      bbox=dict(boxstyle='round', facecolor='white'),
                                                      arrowprops=dict(arrowstyle='-')))

    def annotate_fish(self, fish, inx=-1):
        self.remove_peak_annotation()
        for harmonic, freq in enumerate(fish[:, 0]):
            peak = self.allpeaks[np.abs(self.allpeaks[:, 0] - freq) < 0.8 * self.deltaf, :]
            if len(peak) > 0:
                self.annotate_peak(peak[0, :], harmonic, inx)
        self.fig.canvas.draw()

    def update_plots(self, draw=True):
        self.remove_peak_annotation()
        # trace:
        self.axt.set_xlim(self.toffset, self.toffset + self.twindow)
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        if t1>len(self.data):
            t1 = len(self.data)
        time = np.arange(t0, t1) / self.samplerate
        if self.trace_artist == None:
            self.trace_artist, = self.axt.plot(time, self.data[t0:t1,self.channel])
        else:
            self.trace_artist.set_data(time, self.data[t0:t1,self.channel])
        self.axt.set_ylim(self.ymin, self.ymax)

        # compute power spectrum:
        n_fft = nfft(self.samplerate, self.freq_resolution)
        t00 = t0
        t11 = t1
        w = t11 - t00
        minw = n_fft * (self.cfg.value('minPSDAverages') + 1) // 2
        if t11 - t00 < minw:
            w = minw
            t11 = t00 + w
        if t11 >= len(self.data):
            t11 = len(self.data)
            t00 = t11 - w
        if t00 < 0:
            t00 = 0
            t11 = w
        freqs, power = psd(self.data[t00:t11,self.channel], self.samplerate,
                           self.freq_resolution, detrend=ml.detrend_mean)
        self.deltaf = freqs[1] - freqs[0]
        # detect fish:
        h_kwargs = psd_peak_detection_args(self.cfg)
        h_kwargs.update(harmonic_groups_args(self.cfg))
        self.fishlist, fzero_harmonics, self.mains, self.allpeaks, peaks, lowth, highth, center = harmonic_groups(freqs, power, verbose=self.verbose, **h_kwargs)
        highth = center + highth - 0.5 * lowth
        lowth = center + 0.5 * lowth

        # spectrogram:
        t2 = t1 + n_fft
        freqs, bins, specpower = spectrogram(self.data[t0:t2,self.channel],
                                             self.samplerate,
                                             self.freq_resolution,
                                             detrend=ml.detrend_mean)
        z = decibel(specpower)
        z = np.flipud(z)
        extent = self.toffset, self.toffset + np.amax(bins), freqs[0], freqs[-1]
        self.axs.set_xlim(self.toffset, self.toffset + self.twindow)
        if self.spectrogram_artist == None:
            self.fmax = np.round((freqs[-1] / 4.0) / 100.0) * 100.0
            min = highth
            min = np.percentile(z, 70.0)
            max = np.percentile(z, 99.9) + 30.0
            # cm = plt.get_cmap( 'hot_r' )
            cm = plt.get_cmap('jet')
            self.spectrogram_artist = self.axs.imshow(z, aspect='auto',
                                                      extent=extent, vmin=min, vmax=max,
                                                      cmap=cm, zorder=1)
        else:
            self.spectrogram_artist.set_data(z)
            self.spectrogram_artist.set_extent(extent)
        self.axs.set_ylim(self.fmin, self.fmax)

        # power spectrum:
        self.axp.set_xlim(self.fmin, self.fmax)
        if self.deltaf >= 1000.0:
            dfs = '%.3gkHz' % 0.001 * self.deltaf
        else:
            dfs = '%.3gHz' % self.deltaf
        tw = float(w) / self.samplerate
        if tw < 1.0:
            tws = '%.3gms' % (1000.0 * tw)
        else:
            tws = '%.3gs' % (tw)
        a = 2 * w // n_fft - 1  # number of ffts
        m = ''
        if self.cfg.value('mainsFreq') > 0.0:
            m = ', mains=%.0fHz' % self.cfg.value('mainsFreq')
        if self.power_frequency_label == None:
            self.power_frequency_label = self.axp.set_xlabel(
                r'Frequency [Hz] (nfft={:d}, $\Delta f$={:s}: T={:s}/{:d}{:s})'.format(n_fft, dfs, tws, a, m))
        else:
            self.power_frequency_label.set_text(
                r'Frequency [Hz] (nfft={:d}, $\Delta f$={:s}: T={:s}/{:d}{:s})'.format(n_fft, dfs, tws, a, m))
        self.axp.set_xlim(self.fmin, self.fmax)
        if self.power_label == None:
            self.power_label = self.axp.set_ylabel('Power')
        if self.decibel:
            if len(self.allpeaks) > 0:
                self.allpeaks[:, 1] = decibel(self.allpeaks[:, 1])
            power = decibel(power)
            pmin = np.min(power[freqs < self.fmax])
            pmin = np.floor(pmin / 10.0) * 10.0
            pmax = np.max(power[freqs < self.fmax])
            pmax = np.ceil(pmax / 10.0) * 10.0
            doty = pmax - 5.0
            self.power_label.set_text('Power [dB]')
            self.axp.set_ylim(pmin, pmax)
        else:
            pmax = np.max(power[freqs < self.fmax])
            doty = pmax
            pmax *= 1.1
            self.power_label.set_text('Power')
            self.axp.set_ylim(0.0, pmax)
        if self.all_peaks_artis == None:
            self.all_peaks_artis, = self.axp.plot(self.allpeaks[:, 0],
                                                  np.zeros(len(self.allpeaks[:, 0])) + doty,
                                                  'o', color='#ffffff')
            self.good_peaks_artist, = self.axp.plot(peaks, np.zeros(len(peaks)) + doty,
                                                    'o', color='#888888')
        else:
            self.all_peaks_artis.set_data(self.allpeaks[:, 0],
                                          np.zeros(len(self.allpeaks[:, 0])) + doty)
            self.good_peaks_artist.set_data(peaks, np.zeros(len(peaks)) + doty)
        labels = []
        fsizes = [np.sqrt(np.sum(self.fishlist[k][:, 1])) for k in range(len(self.fishlist))]
        fmaxsize = np.max(fsizes) if len(fsizes) > 0 else 1.0
        for k in range(len(self.peak_artists)):
            self.peak_artists[k].remove()
        self.peak_artists = []
        for k in range(len(self.fishlist)):
            if k >= len(self.markerrange):
                break
            fpeaks = self.fishlist[k][:, 0]
            fpeakinx = [int(np.round(fp / self.deltaf)) for fp in fpeaks if fp < freqs[-1]]
            fsize = 7.0 + 10.0 * (fsizes[k] / fmaxsize) ** 0.5
            fishpoints, = self.axp.plot(fpeaks[:len(fpeakinx)], power[fpeakinx], linestyle='None',
                                        color=self.colorrange[k % len(self.colorrange)],
                                        marker=self.markerrange[k], ms=fsize,
                                        mec=None, mew=0.0, zorder=1)
            self.peak_artists.append(fishpoints)
            if self.deltaf < 0.1:
                labels.append('%4.2f Hz' % fpeaks[0])
            elif self.deltaf < 1.0:
                labels.append('%4.1f Hz' % fpeaks[0])
            else:
                labels.append('%4.0f Hz' % fpeaks[0])
        if len(self.mains) > 0:
            fpeaks = self.mains[:, 0]
            fpeakinx = np.array([np.round(fp / self.deltaf) for fp in fpeaks if fp < freqs[-1]], dtype=int)
            fishpoints, = self.axp.plot(fpeaks[:len(fpeakinx)],
                                        power[fpeakinx], linestyle='None',
                                        marker='.', color='k', ms=10, mec=None, mew=0.0, zorder=2)
            self.peak_artists.append(fishpoints)
            labels.append('%3.0f Hz mains' % self.cfg.value('mainsFreq'))
        ncol = (len(labels)-1) // 8 + 1
        self.legendhandle = self.axs.legend(self.peak_artists[:len(labels)], labels, loc='upper right', ncol=ncol)
        self.legenddict = dict()
        for legpoints, (finx, fish) in zip(self.legendhandle.get_lines(), enumerate(self.fishlist)):
            legpoints.set_picker(8)
            self.legenddict[legpoints] = [finx, fish]
        self.legendhandle.set_visible(self.legend)
        if self.power_artist == None:
            self.power_artist, = self.axp.plot(freqs, power, 'b', zorder=3)
        else:
            self.power_artist.set_data(freqs, power)
        if draw:
            self.fig.canvas.draw()

    def keypress(self, event):
        # print('pressed', event.key)
        if event.key in '+=X':
            if self.twindow * self.samplerate > 20:
                self.twindow *= 0.5
                self.update_plots()
        elif event.key in '-x':
            if self.twindow < len(self.data) / self.samplerate:
                self.twindow *= 2.0
                self.update_plots()
        elif event.key == 'pagedown':
            if self.toffset + 0.5 * self.twindow < len(self.data) / self.samplerate:
                self.toffset += 0.5 * self.twindow
                self.update_plots()
        elif event.key == 'pageup':
            if self.toffset > 0:
                self.toffset -= 0.5 * self.twindow
                if self.toffset < 0.0:
                    self.toffset = 0.0
                self.update_plots()
        elif event.key == 'a':
            if self.min_clip == 0.0 or self.max_clip == 0.0:
                self.min_clip, self.max_clip = clip_amplitudes(
                    self.data[:,self.channel],
                    **clip_args(self.cfg, self.samplerate))
            try:
                if self.cfg.value('windowSize') <= 0.0:
                    self.cfg.set('windowSize', (len(self.data)-1)/self.samplerate)
                idx0, idx1, clipped = best_window_indices(
                    self.data[:,self.channel], self.samplerate,
                    min_clip=self.min_clip, max_clip=self.max_clip,
                    **best_window_args(self.cfg))
                if idx1 > 0:
                    self.toffset = idx0 / self.samplerate
                    self.twindow = (idx1 - idx0) / self.samplerate
                    self.twindow *= 2.0/(self.cfg.value('numberPSDWindows')+1.0)
                    self.update_plots()
            except UserWarning as e:
                if self.verbose > 0:
                    print(str(e))
        elif event.key == 'ctrl+pagedown':
            if self.toffset + 5.0 * self.twindow < len(self.data) / self.samplerate:
                self.toffset += 5.0 * self.twindow
                self.update_plots()
        elif event.key == 'ctrl+pageup':
            if self.toffset > 0:
                self.toffset -= 5.0 * self.twindow
                if self.toffset < 0.0:
                    self.toffset = 0.0
                self.update_plots()
        elif event.key == 'down':
            if self.toffset + self.twindow < len(self.data) / self.samplerate:
                self.toffset += 0.05 * self.twindow
                self.update_plots()
        elif event.key == 'up':
            if self.toffset > 0.0:
                self.toffset -= 0.05 * self.twindow
                if self.toffset < 0.0:
                    self.toffset = 0.0
                self.update_plots()
        elif event.key == 'home':
            if self.toffset > 0.0:
                self.toffset = 0.0
                self.update_plots()
        elif event.key == 'end':
            toffs = np.floor(len(self.data) / self.samplerate / self.twindow) * self.twindow
            if self.toffset < toffs:
                self.toffset = toffs
                self.update_plots()
        elif event.key == 'y':
            h = self.ymax - self.ymin
            c = 0.5 * (self.ymax + self.ymin)
            self.ymin = c - h
            self.ymax = c + h
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'Y':
            h = 0.25 * (self.ymax - self.ymin)
            c = 0.5 * (self.ymax + self.ymin)
            self.ymin = c - h
            self.ymax = c + h
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'v':
            t0 = int(np.round(self.toffset * self.samplerate))
            t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
            min = np.min(self.data[t0:t1,self.channel])
            max = np.max(self.data[t0:t1,self.channel])
            h = 0.5 * (max - min)
            c = 0.5 * (max + min)
            self.ymin = c - h
            self.ymax = c + h
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'V':
            self.ymin = -1.0
            self.ymax = +1.0
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'left':
            if self.fmin > 0.0:
                fwidth = self.fmax - self.fmin
                self.fmin -= 0.5 * fwidth
                self.fmax -= 0.5 * fwidth
                if self.fmin < 0.0:
                    self.fmin = 0.0
                    self.fmax = fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key == 'right':
            if self.fmax < 0.5 * self.samplerate:
                fwidth = self.fmax - self.fmin
                self.fmin += 0.5 * fwidth
                self.fmax += 0.5 * fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key == 'ctrl+left':
            if self.fmin > 0.0:
                fwidth = self.fmax - self.fmin
                self.fmin = 0.0
                self.fmax = fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key == 'ctrl+right':
            if self.fmax < 0.5 * self.samplerate:
                fwidth = self.fmax - self.fmin
                fm = 0.5 * self.samplerate
                self.fmax = np.ceil(fm / fwidth) * fwidth
                self.fmin = self.fmax - fwidth
                if self.fmin < 0.0:
                    self.fmin = 0.0
                    self.fmax = fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key in 'f':
            if self.fmax < 0.5 * self.samplerate or self.fmin > 0.0:
                fwidth = self.fmax - self.fmin
                if self.fmax < 0.5 * self.samplerate:
                    self.fmax = self.fmin + 2.0 * fwidth
                elif self.fmin > 0.0:
                    self.fmin = self.fmax - 2.0 * fwidth
                    if self.fmin < 0.0:
                        self.fmin = 0.0
                        self.fmax = 2.0 * fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key in 'F':
            if self.fmax - self.fmin > 1.0:
                fwidth = self.fmax - self.fmin
                self.fmax = self.fmin + 0.5 * fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key in 'r':
            if self.freq_resolution < 1000.0:
                self.freq_resolution *= 2.0
                self.update_plots()
        elif event.key in 'R':
            if 1.0 / self.freq_resolution < self.tmax:
                self.freq_resolution *= 0.5
                self.update_plots()
        elif event.key in 'd':
            self.decibel = not self.decibel
            self.update_plots()
        elif event.key in 'm':
            if self.cfg.value('mainsFreq') == 0.0:
                self.cfg.set('mainsFreq', self.mains_freq)
            else:
                self.cfg.set('mainsFreq', 0.0)
            self.update_plots()
        elif event.key in 't':
            t_diff = self.cfg.value('highThresholdFactor') - self.cfg.value('lowThresholdFactor')
            self.cfg.set('lowThresholdFactor', self.cfg.value('lowThresholdFactor') - 0.1)
            if self.cfg.value('lowThresholdFactor') < 0.1:
                self.cfg.set('lowThresholdFactor', 0.1)
            self.cfg.set('highThresholdFactor', self.cfg.value('lowThresholdFactor') + t_diff)
            print('lowThresholdFactor =', self.cfg.value('lowThresholdFactor'))
            self.update_plots()
        elif event.key in 'T':
            t_diff = self.cfg.value('highThresholdFactor') - self.cfg.value('lowThresholdFactor')
            self.cfg.set('lowThresholdFactor', self.cfg.value('lowThresholdFactor') + 0.1)
            if self.cfg.value('lowThresholdFactor') > 20.0:
                self.cfg.set('lowThresholdFactor', 20.0)
            self.cfg.set('highThresholdFactor', self.cfg.value('lowThresholdFactor') + t_diff)
            print('lowThresholdFactor =', self.cfg.value('lowThresholdFactor'))
            self.update_plots()
        elif event.key == 'escape':
            self.remove_peak_annotation()
            self.fig.canvas.draw()
        elif event.key in 'h':
            self.help = not self.help
            for ht in self.helptext:
                ht.set_visible(self.help)
            self.fig.canvas.draw()
        elif event.key in 'l':
            self.legend = not self.legend
            self.legendhandle.set_visible(self.legend)
            self.fig.canvas.draw()
        elif event.key in 'w':
            self.plot_waveform()
        elif event.key in 'p':
            self.play_segment()
        elif event.key in 'P':
            self.play_all()
        elif event.key in '1' :
            self.play_tone('c3')
        elif event.key in '2' :
            self.play_tone('a3')
        elif event.key in '3' :
            self.play_tone('e4')
        elif event.key in '4' :
            self.play_tone('a4')
        elif event.key in '5' :
            self.play_tone('c5')
        elif event.key in '6' :
            self.play_tone('e5')
        elif event.key in '7' :
            self.play_tone('g5')
        elif event.key in '8' :
            self.play_tone('a5')
        elif event.key in '9' :
            self.play_tone('c6')
        elif event.key in 'S':
            self.save_segment()

    def buttonpress( self, event ) :
        # print('mouse pressed', event.button, event.key, event.step)
        if event.inaxes == self.axp:
            if event.key == 'shift' or event.key == 'control':
                # show next or previous harmonic:
                if event.key == 'shift':
                    if event.button == 1:
                        ftarget = event.xdata / 2.0
                    elif event.button == 3:
                        ftarget = event.xdata * 2.0
                else:
                    if event.button == 1:
                        ftarget = event.xdata / 1.5
                    elif event.button == 3:
                        ftarget = event.xdata * 1.5
                foffs = event.xdata - self.fmin
                fwidth = self.fmax - self.fmin
                self.fmin = ftarget - foffs
                self.fmax = self.fmin + fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
            else:
                # put label on peak
                self.remove_peak_annotation()
                # find closest peak:
                fwidth = self.fmax - self.fmin
                peakdist = np.abs(self.allpeaks[:, 0] - event.xdata)
                inx = np.argmin(peakdist)
                if peakdist[inx] < 0.005 * fwidth:
                    peak = self.allpeaks[inx, :]
                    # find fish:
                    foundfish = False
                    for finx, fish in enumerate(self.fishlist):
                        if np.min(np.abs(fish[:, 0] - peak[0])) < 0.8 * self.deltaf:
                            self.annotate_fish(fish, finx)
                            foundfish = True
                            break
                    if not foundfish:
                        self.annotate_peak(peak)
                        self.fig.canvas.draw()
                else:
                    self.fig.canvas.draw()

    def onpick(self, event):
        # print('pick')
        legendpoint = event.artist
        finx, fish = self.legenddict[legendpoint]
        self.annotate_fish(fish, finx)

    def resize(self, event):
        # print('resized', event.width, event.height)
        leftpixel = 80.0
        rightpixel = 20.0
        xaxispixel = 50.0
        toppixel = 20.0
        timeaxis = 0.42
        left = leftpixel / event.width
        width = 1.0 - left - rightpixel / event.width
        xaxis = xaxispixel / event.height
        top = toppixel / event.height
        height = (1.0 - timeaxis - top) / 2.0
        if left < 0.5 and width < 1.0 and xaxis < 0.3 and top < 0.2:
            self.axt.set_position([left, timeaxis + height, width, height])
            self.axs.set_position([left, timeaxis, width, height])
            self.axp.set_position([left, xaxis, width, timeaxis - 2.0 * xaxis])

    def plot_waveform(self):
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        name = self.filename.split('.')[0]
        if self.channel > 0:
            ax.set_title('{filename} channel={channel:d}'.format(
                filename=self.filename, channel=self.channel))
            figfile = '{name}-{channel:d}-{time:.4g}s-waveform.png'.format(
                name=name, channel=self.channel, time=self.toffset)
        else:
            ax.set_title(self.filename)
            figfile = '{name}-{time:.4g}s-waveform.png'.format(
                name=name, time=self.toffset)
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        if t1>len(self.data):
            t1 = len(self.data)
        time = np.arange(t0, t1) / self.samplerate
        if self.twindow < 1.0:
            ax.set_xlabel('Time [ms]')
            ax.set_xlim(1000.0 * self.toffset,
                        1000.0 * (self.toffset + self.twindow))
            ax.plot(1000.0 * time, self.data[t0:t1,self.channel])
        else:
            ax.set_xlabel('Time [s]')
            ax.set_xlim(self.toffset, self.toffset + self.twindow)
            ax.plot(time, self.data[t0:t1,self.channel])
        ax.set_ylabel('Amplitude [{:s}]'.format(self.unit))
        fig.tight_layout()
        fig.savefig(figfile)
        fig.clear()
        plt.close(fig)
        print('saved waveform figure to', figfile)

    def play_segment(self):
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        playdata = 1.0 * self.data[t0:t1,self.channel]
        fade(playdata, self.samplerate, 0.1)
        self.audio.play(playdata, self.samplerate, blocking=False)

    def save_segment(self):
        t0s = int(np.round(self.toffset))
        t1s = int(np.round(self.toffset + self.twindow))
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        savedata = 1.0 * self.data[t0:t1,self.channel]
        filename = self.filename.split('.')[0]
        segmentfilename = '{name}-{time0:.4g}s-{time1:.4g}s.wav'.format(
                name=filename, time0=t0s, time1 = t1s)
        write_audio(segmentfilename, savedata, self.data.samplerate)
        print('saved segment to: ' , segmentfilename)
        
    def play_all(self):
        self.audio.play(self.data[:,self.channel], self.samplerate,
                        blocking=False)
        
    def play_tone( self, frequency ) :
        self.audio.beep(1.0, frequency)


def short_user_warning(message, category, filename, lineno, file=None, line=''):
    if file is None:
        file = sys.stderr
    if category == UserWarning:
        file.write('%s line %d: %s\n' % ('/'.join(filename.split('/')[-2:]), lineno, message))
    else:
        s = warnings.formatwarning(message, category, filename, lineno, line)
        file.write(s)


def main(cargs=None):
    warnings.showwarning = short_user_warning

    # config file name:
    cfgfile = __package__ + '.cfg'

    # command line arguments:
    if cargs is None:
        cargs = sys.argv[1:]
    parser = argparse.ArgumentParser(
        description='Display waveform, and power spectrum with detected fundamental frequencies of EOD recordings.',
        epilog='version %s by Jan Benda (2015-%s)' % (__version__, __year__))
    parser.add_argument('--version', action='version', version=__version__)
    parser.add_argument('-v', action='count', dest='verbose')
    parser.add_argument('-c', '--save-config', nargs='?', default='', const=cfgfile,
                        type=str, metavar='cfgfile',
                        help='save configuration to file cfgfile (defaults to {0})'.format(cfgfile))
    parser.add_argument('file', nargs='?', default='', type=str,
                        help='name of the file with the time series data')
    parser.add_argument('channel', nargs='?', default=0, type=int,
                        help='channel to be displayed')
    args = parser.parse_args(cargs)
    filepath = args.file

    # set verbosity level from command line:
    verbose = 0
    if args.verbose != None:
        verbose = args.verbose

    if len(args.save_config):
        # save configuration:
        cfg = configuration()
        cfg.load_files(cfgfile, filepath, 4, verbose)
        save_configuration(cfg, cfgfile)
        return
    elif len(filepath) == 0:
        parser.error('you need to specify a file containing some data')

    # load configuration:
    cfg = configuration()
    cfg.load_files(cfgfile, filepath, 4, verbose-1)

    # load data:
    filename = os.path.basename(filepath)
    channel = args.channel
    # TODO: add blocksize and backsize as configuration parameter!
    with DataLoader(filepath, 60.0, 10.0, verbose) as data:
        SignalPlot(data, data.samplerate, data.unit, filename, channel, verbose, cfg)

        
if __name__ == '__main__':
    main()


# 50301L02.WAV t=9 bis 9.15 sec


## 1 fish:
# simple aptero (clipped):
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L14.WAV
# nice sterno:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L31.WAV
# sterno (clipped) with a little bit of background:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L26.WAV
# simple brachy (clipped, with a very small one in the background): still difficult, but great with T=4s
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L30.WAV
# eigenmannia (very nice): EN086.MP3
# single, very nice brachy, with difficult psd:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L19.WAV
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L2[789].WAV

## 2 fish:
# 2 aptero:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L10.WAV
# EN098.MP3 and in particular EN099.MP3 nice 2Hz beat!
# 2 brachy beat:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L08.WAV
# >= 2 brachys:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L2[12789].WAV

## one sterno with weak aptero:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L11.WAV
# EN144.MP3

## 2 and 2 fish:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L12.WAV

## one aptero with brachy:
# EN148

## lots of fish:
# python fishfinder.py ~/data/fishgrid/Panama2014/MP3_1/20140517_RioCanita/40517L07.WAV
# EN065.MP3 EN066.MP3 EN067.MP3 EN103.MP3 EN104.MP3
# EN109: 1Hz beat!!!!
# EN013: doppel detection of 585 Hz
# EN015,30,31: noise estimate problem

# EN083.MP3 aptero glitch
# EN146 sek 4 sterno frequency glitch

# EN056.MP3 EN080.MP3 difficult low frequencies
# EN072.MP3 unstable low and high freq
# EN122.MP3 background fish detection difficulties at low res

# problems: EN088, EN089, 20140524_RioCanita/EN055 sterno not catched, EN056, EN059

Functions

def short_user_warning(message, category, filename, lineno, file=None, line='')
Expand source code
def short_user_warning(message, category, filename, lineno, file=None, line=''):
    if file is None:
        file = sys.stderr
    if category == UserWarning:
        file.write('%s line %d: %s\n' % ('/'.join(filename.split('/')[-2:]), lineno, message))
    else:
        s = warnings.formatwarning(message, category, filename, lineno, line)
        file.write(s)
def main(cargs=None)
Expand source code
def main(cargs=None):
    warnings.showwarning = short_user_warning

    # config file name:
    cfgfile = __package__ + '.cfg'

    # command line arguments:
    if cargs is None:
        cargs = sys.argv[1:]
    parser = argparse.ArgumentParser(
        description='Display waveform, and power spectrum with detected fundamental frequencies of EOD recordings.',
        epilog='version %s by Jan Benda (2015-%s)' % (__version__, __year__))
    parser.add_argument('--version', action='version', version=__version__)
    parser.add_argument('-v', action='count', dest='verbose')
    parser.add_argument('-c', '--save-config', nargs='?', default='', const=cfgfile,
                        type=str, metavar='cfgfile',
                        help='save configuration to file cfgfile (defaults to {0})'.format(cfgfile))
    parser.add_argument('file', nargs='?', default='', type=str,
                        help='name of the file with the time series data')
    parser.add_argument('channel', nargs='?', default=0, type=int,
                        help='channel to be displayed')
    args = parser.parse_args(cargs)
    filepath = args.file

    # set verbosity level from command line:
    verbose = 0
    if args.verbose != None:
        verbose = args.verbose

    if len(args.save_config):
        # save configuration:
        cfg = configuration()
        cfg.load_files(cfgfile, filepath, 4, verbose)
        save_configuration(cfg, cfgfile)
        return
    elif len(filepath) == 0:
        parser.error('you need to specify a file containing some data')

    # load configuration:
    cfg = configuration()
    cfg.load_files(cfgfile, filepath, 4, verbose-1)

    # load data:
    filename = os.path.basename(filepath)
    channel = args.channel
    # TODO: add blocksize and backsize as configuration parameter!
    with DataLoader(filepath, 60.0, 10.0, verbose) as data:
        SignalPlot(data, data.samplerate, data.unit, filename, channel, verbose, cfg)

Classes

class SignalPlot (data, samplingrate, unit, filename, channel, verbose, cfg)
Expand source code
class SignalPlot:
    def __init__(self, data, samplingrate, unit, filename, channel, verbose, cfg):
        self.filename = filename
        self.channel = channel
        self.samplerate = samplingrate
        self.data = data
        self.unit = unit
        self.cfg = cfg
        self.verbose = verbose
        self.tmax = (len(self.data)-1)/self.samplerate
        self.toffset = 0.0
        self.twindow = 8.0
        if self.twindow > self.tmax:
            self.twindow = np.round(2 ** (np.floor(np.log(self.tmax) / np.log(2.0)) + 1.0))
        self.ymin = -1.0
        self.ymax = +1.0
        self.trace_artist = None
        self.spectrogram_artist = None
        self.fmin = 0.0
        self.fmax = 0.0
        self.decibel = True
        self.freq_resolution = self.cfg.value('frequencyResolution')
        self.deltaf = 1.0
        self.mains_freq = self.cfg.value('mainsFreq')
        self.power_label = None
        self.all_peaks_artis = None
        self.good_peaks_artist = None
        self.power_artist = None
        self.power_frequency_label = None
        self.peak_artists = []
        self.legend = True
        self.legendhandle = None
        self.help = False
        self.helptext = []
        self.allpeaks = []
        self.fishlist = []
        self.mains = []
        self.peak_specmarker = []
        self.peak_annotation = []
        self.min_clip = self.cfg.value('minClipAmplitude')
        self.max_clip = self.cfg.value('maxClipAmplitude')
        self.colorrange, self.markerrange = colors_markers()

        # audio output:
        self.audio = PlayAudio()
        
        # set key bindings:
        plt.rcParams['keymap.fullscreen'] = 'ctrl+f'
        plt.rcParams['keymap.pan'] = 'ctrl+m'
        plt.rcParams['keymap.quit'] = 'ctrl+w, alt+q, q'
        plt.rcParams['keymap.yscale'] = ''
        plt.rcParams['keymap.xscale'] = ''
        plt.rcParams['keymap.grid'] = ''
        #plt.rcParams['keymap.all_axes'] = ''

        # the figure:
        plt.ioff()
        self.fig = plt.figure(figsize=(15, 9))
        self.fig.canvas.manager.set_window_title(self.filename + ' channel {0:d}'.format(self.channel))
        self.fig.canvas.mpl_connect('key_press_event', self.keypress)
        self.fig.canvas.mpl_connect('button_press_event', self.buttonpress)
        self.fig.canvas.mpl_connect('pick_event', self.onpick)
        self.fig.canvas.mpl_connect('resize_event', self.resize)
        # trace plot:
        self.axt = self.fig.add_axes([0.1, 0.7, 0.87, 0.25])
        self.axt.set_ylabel('Amplitude [{:s}]'.format(self.unit))
        ht = self.axt.text(0.98, 0.05, '(ctrl+) page and arrow up, down, home, end: scroll', ha='right',
                           transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.15, '+, -, X, x: zoom in/out', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.25, 'y,Y,v,V: zoom amplitudes', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.35, 'p,P: play audio (display,all)', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.45, 'ctrl-f: full screen', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.55, 'w: plot waveform into png file', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.65, 's: save figure', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.75, 'S: save audiosegment', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.85, 'q: quit', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        ht = self.axt.text(0.98, 0.95, 'h: toggle this help', ha='right', transform=self.axt.transAxes)
        self.helptext.append(ht)
        self.axt.set_xticklabels([])
        # spectrogram:
        self.axs = self.fig.add_axes([0.1, 0.45, 0.87, 0.25])
        self.axs.set_xlabel('Time [seconds]')
        self.axs.set_ylabel('Frequency [Hz]')
        # power spectrum:
        self.axp = self.fig.add_axes([0.1, 0.1, 0.87, 0.25])
        ht = self.axp.text(0.98, 0.9, 'r, R: frequency resolution', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.8, 'f, F: zoom', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.7, '(ctrl+) left, right: move', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.6, 'l: toggle legend', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.5, 'd: toggle decibel', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.4, 'm: toggle mains filter', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.3, 'left mouse: show peak properties', ha='right', transform=self.axp.transAxes)
        self.helptext.append(ht)
        ht = self.axp.text(0.98, 0.2, 'shift/ctrl + left/right mouse: goto previous/next harmonic', ha='right',
                           transform=self.axp.transAxes)
        self.helptext.append(ht)
        # plot:
        for ht in self.helptext:
            ht.set_visible(self.help)
        self.update_plots(False)
        plt.show()

    def __del__(self):
        self.audio.close()

    def remove_peak_annotation(self):
        for fm in self.peak_specmarker:
            fm.remove()
        self.peak_specmarker = []
        for fa in self.peak_annotation:
            fa.remove()
        self.peak_annotation = []

    def annotate_peak(self, peak, harmonics=-1, inx=-1):
        # marker:
        if inx >= 0:
            m, = self.axs.plot([self.toffset + 0.01 * self.twindow], [peak[0]], linestyle='None',
                               color=self.colorrange[inx % len(self.colorrange)],
                               marker=self.markerrange[inx], ms=10.0, mec=None, mew=0.0, zorder=2)
        else:
            m, = self.axs.plot([self.toffset + 0.01 * self.twindow], [peak[0]], linestyle='None',
                               color='k', marker='o', ms=10.0, mec=None, mew=0.0, zorder=2)
        self.peak_specmarker.append(m)
        # annotation:
        fwidth = self.fmax - self.fmin
        pl = []
        pl.append(r'$f=$%.1f Hz' % peak[0])
        pl.append(r'$h=$%d' % harmonics)
        pl.append(r'$p=$%g' % peak[1])
        pl.append(r'$c=$%.0f' % peak[2])
        self.peak_annotation.append(self.axp.annotate('\n'.join(pl), xy=(peak[0], peak[1]),
                                                      xytext=(peak[0] + 0.03 * fwidth, peak[1]),
                                                      bbox=dict(boxstyle='round', facecolor='white'),
                                                      arrowprops=dict(arrowstyle='-')))

    def annotate_fish(self, fish, inx=-1):
        self.remove_peak_annotation()
        for harmonic, freq in enumerate(fish[:, 0]):
            peak = self.allpeaks[np.abs(self.allpeaks[:, 0] - freq) < 0.8 * self.deltaf, :]
            if len(peak) > 0:
                self.annotate_peak(peak[0, :], harmonic, inx)
        self.fig.canvas.draw()

    def update_plots(self, draw=True):
        self.remove_peak_annotation()
        # trace:
        self.axt.set_xlim(self.toffset, self.toffset + self.twindow)
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        if t1>len(self.data):
            t1 = len(self.data)
        time = np.arange(t0, t1) / self.samplerate
        if self.trace_artist == None:
            self.trace_artist, = self.axt.plot(time, self.data[t0:t1,self.channel])
        else:
            self.trace_artist.set_data(time, self.data[t0:t1,self.channel])
        self.axt.set_ylim(self.ymin, self.ymax)

        # compute power spectrum:
        n_fft = nfft(self.samplerate, self.freq_resolution)
        t00 = t0
        t11 = t1
        w = t11 - t00
        minw = n_fft * (self.cfg.value('minPSDAverages') + 1) // 2
        if t11 - t00 < minw:
            w = minw
            t11 = t00 + w
        if t11 >= len(self.data):
            t11 = len(self.data)
            t00 = t11 - w
        if t00 < 0:
            t00 = 0
            t11 = w
        freqs, power = psd(self.data[t00:t11,self.channel], self.samplerate,
                           self.freq_resolution, detrend=ml.detrend_mean)
        self.deltaf = freqs[1] - freqs[0]
        # detect fish:
        h_kwargs = psd_peak_detection_args(self.cfg)
        h_kwargs.update(harmonic_groups_args(self.cfg))
        self.fishlist, fzero_harmonics, self.mains, self.allpeaks, peaks, lowth, highth, center = harmonic_groups(freqs, power, verbose=self.verbose, **h_kwargs)
        highth = center + highth - 0.5 * lowth
        lowth = center + 0.5 * lowth

        # spectrogram:
        t2 = t1 + n_fft
        freqs, bins, specpower = spectrogram(self.data[t0:t2,self.channel],
                                             self.samplerate,
                                             self.freq_resolution,
                                             detrend=ml.detrend_mean)
        z = decibel(specpower)
        z = np.flipud(z)
        extent = self.toffset, self.toffset + np.amax(bins), freqs[0], freqs[-1]
        self.axs.set_xlim(self.toffset, self.toffset + self.twindow)
        if self.spectrogram_artist == None:
            self.fmax = np.round((freqs[-1] / 4.0) / 100.0) * 100.0
            min = highth
            min = np.percentile(z, 70.0)
            max = np.percentile(z, 99.9) + 30.0
            # cm = plt.get_cmap( 'hot_r' )
            cm = plt.get_cmap('jet')
            self.spectrogram_artist = self.axs.imshow(z, aspect='auto',
                                                      extent=extent, vmin=min, vmax=max,
                                                      cmap=cm, zorder=1)
        else:
            self.spectrogram_artist.set_data(z)
            self.spectrogram_artist.set_extent(extent)
        self.axs.set_ylim(self.fmin, self.fmax)

        # power spectrum:
        self.axp.set_xlim(self.fmin, self.fmax)
        if self.deltaf >= 1000.0:
            dfs = '%.3gkHz' % 0.001 * self.deltaf
        else:
            dfs = '%.3gHz' % self.deltaf
        tw = float(w) / self.samplerate
        if tw < 1.0:
            tws = '%.3gms' % (1000.0 * tw)
        else:
            tws = '%.3gs' % (tw)
        a = 2 * w // n_fft - 1  # number of ffts
        m = ''
        if self.cfg.value('mainsFreq') > 0.0:
            m = ', mains=%.0fHz' % self.cfg.value('mainsFreq')
        if self.power_frequency_label == None:
            self.power_frequency_label = self.axp.set_xlabel(
                r'Frequency [Hz] (nfft={:d}, $\Delta f$={:s}: T={:s}/{:d}{:s})'.format(n_fft, dfs, tws, a, m))
        else:
            self.power_frequency_label.set_text(
                r'Frequency [Hz] (nfft={:d}, $\Delta f$={:s}: T={:s}/{:d}{:s})'.format(n_fft, dfs, tws, a, m))
        self.axp.set_xlim(self.fmin, self.fmax)
        if self.power_label == None:
            self.power_label = self.axp.set_ylabel('Power')
        if self.decibel:
            if len(self.allpeaks) > 0:
                self.allpeaks[:, 1] = decibel(self.allpeaks[:, 1])
            power = decibel(power)
            pmin = np.min(power[freqs < self.fmax])
            pmin = np.floor(pmin / 10.0) * 10.0
            pmax = np.max(power[freqs < self.fmax])
            pmax = np.ceil(pmax / 10.0) * 10.0
            doty = pmax - 5.0
            self.power_label.set_text('Power [dB]')
            self.axp.set_ylim(pmin, pmax)
        else:
            pmax = np.max(power[freqs < self.fmax])
            doty = pmax
            pmax *= 1.1
            self.power_label.set_text('Power')
            self.axp.set_ylim(0.0, pmax)
        if self.all_peaks_artis == None:
            self.all_peaks_artis, = self.axp.plot(self.allpeaks[:, 0],
                                                  np.zeros(len(self.allpeaks[:, 0])) + doty,
                                                  'o', color='#ffffff')
            self.good_peaks_artist, = self.axp.plot(peaks, np.zeros(len(peaks)) + doty,
                                                    'o', color='#888888')
        else:
            self.all_peaks_artis.set_data(self.allpeaks[:, 0],
                                          np.zeros(len(self.allpeaks[:, 0])) + doty)
            self.good_peaks_artist.set_data(peaks, np.zeros(len(peaks)) + doty)
        labels = []
        fsizes = [np.sqrt(np.sum(self.fishlist[k][:, 1])) for k in range(len(self.fishlist))]
        fmaxsize = np.max(fsizes) if len(fsizes) > 0 else 1.0
        for k in range(len(self.peak_artists)):
            self.peak_artists[k].remove()
        self.peak_artists = []
        for k in range(len(self.fishlist)):
            if k >= len(self.markerrange):
                break
            fpeaks = self.fishlist[k][:, 0]
            fpeakinx = [int(np.round(fp / self.deltaf)) for fp in fpeaks if fp < freqs[-1]]
            fsize = 7.0 + 10.0 * (fsizes[k] / fmaxsize) ** 0.5
            fishpoints, = self.axp.plot(fpeaks[:len(fpeakinx)], power[fpeakinx], linestyle='None',
                                        color=self.colorrange[k % len(self.colorrange)],
                                        marker=self.markerrange[k], ms=fsize,
                                        mec=None, mew=0.0, zorder=1)
            self.peak_artists.append(fishpoints)
            if self.deltaf < 0.1:
                labels.append('%4.2f Hz' % fpeaks[0])
            elif self.deltaf < 1.0:
                labels.append('%4.1f Hz' % fpeaks[0])
            else:
                labels.append('%4.0f Hz' % fpeaks[0])
        if len(self.mains) > 0:
            fpeaks = self.mains[:, 0]
            fpeakinx = np.array([np.round(fp / self.deltaf) for fp in fpeaks if fp < freqs[-1]], dtype=int)
            fishpoints, = self.axp.plot(fpeaks[:len(fpeakinx)],
                                        power[fpeakinx], linestyle='None',
                                        marker='.', color='k', ms=10, mec=None, mew=0.0, zorder=2)
            self.peak_artists.append(fishpoints)
            labels.append('%3.0f Hz mains' % self.cfg.value('mainsFreq'))
        ncol = (len(labels)-1) // 8 + 1
        self.legendhandle = self.axs.legend(self.peak_artists[:len(labels)], labels, loc='upper right', ncol=ncol)
        self.legenddict = dict()
        for legpoints, (finx, fish) in zip(self.legendhandle.get_lines(), enumerate(self.fishlist)):
            legpoints.set_picker(8)
            self.legenddict[legpoints] = [finx, fish]
        self.legendhandle.set_visible(self.legend)
        if self.power_artist == None:
            self.power_artist, = self.axp.plot(freqs, power, 'b', zorder=3)
        else:
            self.power_artist.set_data(freqs, power)
        if draw:
            self.fig.canvas.draw()

    def keypress(self, event):
        # print('pressed', event.key)
        if event.key in '+=X':
            if self.twindow * self.samplerate > 20:
                self.twindow *= 0.5
                self.update_plots()
        elif event.key in '-x':
            if self.twindow < len(self.data) / self.samplerate:
                self.twindow *= 2.0
                self.update_plots()
        elif event.key == 'pagedown':
            if self.toffset + 0.5 * self.twindow < len(self.data) / self.samplerate:
                self.toffset += 0.5 * self.twindow
                self.update_plots()
        elif event.key == 'pageup':
            if self.toffset > 0:
                self.toffset -= 0.5 * self.twindow
                if self.toffset < 0.0:
                    self.toffset = 0.0
                self.update_plots()
        elif event.key == 'a':
            if self.min_clip == 0.0 or self.max_clip == 0.0:
                self.min_clip, self.max_clip = clip_amplitudes(
                    self.data[:,self.channel],
                    **clip_args(self.cfg, self.samplerate))
            try:
                if self.cfg.value('windowSize') <= 0.0:
                    self.cfg.set('windowSize', (len(self.data)-1)/self.samplerate)
                idx0, idx1, clipped = best_window_indices(
                    self.data[:,self.channel], self.samplerate,
                    min_clip=self.min_clip, max_clip=self.max_clip,
                    **best_window_args(self.cfg))
                if idx1 > 0:
                    self.toffset = idx0 / self.samplerate
                    self.twindow = (idx1 - idx0) / self.samplerate
                    self.twindow *= 2.0/(self.cfg.value('numberPSDWindows')+1.0)
                    self.update_plots()
            except UserWarning as e:
                if self.verbose > 0:
                    print(str(e))
        elif event.key == 'ctrl+pagedown':
            if self.toffset + 5.0 * self.twindow < len(self.data) / self.samplerate:
                self.toffset += 5.0 * self.twindow
                self.update_plots()
        elif event.key == 'ctrl+pageup':
            if self.toffset > 0:
                self.toffset -= 5.0 * self.twindow
                if self.toffset < 0.0:
                    self.toffset = 0.0
                self.update_plots()
        elif event.key == 'down':
            if self.toffset + self.twindow < len(self.data) / self.samplerate:
                self.toffset += 0.05 * self.twindow
                self.update_plots()
        elif event.key == 'up':
            if self.toffset > 0.0:
                self.toffset -= 0.05 * self.twindow
                if self.toffset < 0.0:
                    self.toffset = 0.0
                self.update_plots()
        elif event.key == 'home':
            if self.toffset > 0.0:
                self.toffset = 0.0
                self.update_plots()
        elif event.key == 'end':
            toffs = np.floor(len(self.data) / self.samplerate / self.twindow) * self.twindow
            if self.toffset < toffs:
                self.toffset = toffs
                self.update_plots()
        elif event.key == 'y':
            h = self.ymax - self.ymin
            c = 0.5 * (self.ymax + self.ymin)
            self.ymin = c - h
            self.ymax = c + h
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'Y':
            h = 0.25 * (self.ymax - self.ymin)
            c = 0.5 * (self.ymax + self.ymin)
            self.ymin = c - h
            self.ymax = c + h
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'v':
            t0 = int(np.round(self.toffset * self.samplerate))
            t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
            min = np.min(self.data[t0:t1,self.channel])
            max = np.max(self.data[t0:t1,self.channel])
            h = 0.5 * (max - min)
            c = 0.5 * (max + min)
            self.ymin = c - h
            self.ymax = c + h
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'V':
            self.ymin = -1.0
            self.ymax = +1.0
            self.axt.set_ylim(self.ymin, self.ymax)
            self.fig.canvas.draw()
        elif event.key == 'left':
            if self.fmin > 0.0:
                fwidth = self.fmax - self.fmin
                self.fmin -= 0.5 * fwidth
                self.fmax -= 0.5 * fwidth
                if self.fmin < 0.0:
                    self.fmin = 0.0
                    self.fmax = fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key == 'right':
            if self.fmax < 0.5 * self.samplerate:
                fwidth = self.fmax - self.fmin
                self.fmin += 0.5 * fwidth
                self.fmax += 0.5 * fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key == 'ctrl+left':
            if self.fmin > 0.0:
                fwidth = self.fmax - self.fmin
                self.fmin = 0.0
                self.fmax = fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key == 'ctrl+right':
            if self.fmax < 0.5 * self.samplerate:
                fwidth = self.fmax - self.fmin
                fm = 0.5 * self.samplerate
                self.fmax = np.ceil(fm / fwidth) * fwidth
                self.fmin = self.fmax - fwidth
                if self.fmin < 0.0:
                    self.fmin = 0.0
                    self.fmax = fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key in 'f':
            if self.fmax < 0.5 * self.samplerate or self.fmin > 0.0:
                fwidth = self.fmax - self.fmin
                if self.fmax < 0.5 * self.samplerate:
                    self.fmax = self.fmin + 2.0 * fwidth
                elif self.fmin > 0.0:
                    self.fmin = self.fmax - 2.0 * fwidth
                    if self.fmin < 0.0:
                        self.fmin = 0.0
                        self.fmax = 2.0 * fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key in 'F':
            if self.fmax - self.fmin > 1.0:
                fwidth = self.fmax - self.fmin
                self.fmax = self.fmin + 0.5 * fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
        elif event.key in 'r':
            if self.freq_resolution < 1000.0:
                self.freq_resolution *= 2.0
                self.update_plots()
        elif event.key in 'R':
            if 1.0 / self.freq_resolution < self.tmax:
                self.freq_resolution *= 0.5
                self.update_plots()
        elif event.key in 'd':
            self.decibel = not self.decibel
            self.update_plots()
        elif event.key in 'm':
            if self.cfg.value('mainsFreq') == 0.0:
                self.cfg.set('mainsFreq', self.mains_freq)
            else:
                self.cfg.set('mainsFreq', 0.0)
            self.update_plots()
        elif event.key in 't':
            t_diff = self.cfg.value('highThresholdFactor') - self.cfg.value('lowThresholdFactor')
            self.cfg.set('lowThresholdFactor', self.cfg.value('lowThresholdFactor') - 0.1)
            if self.cfg.value('lowThresholdFactor') < 0.1:
                self.cfg.set('lowThresholdFactor', 0.1)
            self.cfg.set('highThresholdFactor', self.cfg.value('lowThresholdFactor') + t_diff)
            print('lowThresholdFactor =', self.cfg.value('lowThresholdFactor'))
            self.update_plots()
        elif event.key in 'T':
            t_diff = self.cfg.value('highThresholdFactor') - self.cfg.value('lowThresholdFactor')
            self.cfg.set('lowThresholdFactor', self.cfg.value('lowThresholdFactor') + 0.1)
            if self.cfg.value('lowThresholdFactor') > 20.0:
                self.cfg.set('lowThresholdFactor', 20.0)
            self.cfg.set('highThresholdFactor', self.cfg.value('lowThresholdFactor') + t_diff)
            print('lowThresholdFactor =', self.cfg.value('lowThresholdFactor'))
            self.update_plots()
        elif event.key == 'escape':
            self.remove_peak_annotation()
            self.fig.canvas.draw()
        elif event.key in 'h':
            self.help = not self.help
            for ht in self.helptext:
                ht.set_visible(self.help)
            self.fig.canvas.draw()
        elif event.key in 'l':
            self.legend = not self.legend
            self.legendhandle.set_visible(self.legend)
            self.fig.canvas.draw()
        elif event.key in 'w':
            self.plot_waveform()
        elif event.key in 'p':
            self.play_segment()
        elif event.key in 'P':
            self.play_all()
        elif event.key in '1' :
            self.play_tone('c3')
        elif event.key in '2' :
            self.play_tone('a3')
        elif event.key in '3' :
            self.play_tone('e4')
        elif event.key in '4' :
            self.play_tone('a4')
        elif event.key in '5' :
            self.play_tone('c5')
        elif event.key in '6' :
            self.play_tone('e5')
        elif event.key in '7' :
            self.play_tone('g5')
        elif event.key in '8' :
            self.play_tone('a5')
        elif event.key in '9' :
            self.play_tone('c6')
        elif event.key in 'S':
            self.save_segment()

    def buttonpress( self, event ) :
        # print('mouse pressed', event.button, event.key, event.step)
        if event.inaxes == self.axp:
            if event.key == 'shift' or event.key == 'control':
                # show next or previous harmonic:
                if event.key == 'shift':
                    if event.button == 1:
                        ftarget = event.xdata / 2.0
                    elif event.button == 3:
                        ftarget = event.xdata * 2.0
                else:
                    if event.button == 1:
                        ftarget = event.xdata / 1.5
                    elif event.button == 3:
                        ftarget = event.xdata * 1.5
                foffs = event.xdata - self.fmin
                fwidth = self.fmax - self.fmin
                self.fmin = ftarget - foffs
                self.fmax = self.fmin + fwidth
                self.axs.set_ylim(self.fmin, self.fmax)
                self.axp.set_xlim(self.fmin, self.fmax)
                self.fig.canvas.draw()
            else:
                # put label on peak
                self.remove_peak_annotation()
                # find closest peak:
                fwidth = self.fmax - self.fmin
                peakdist = np.abs(self.allpeaks[:, 0] - event.xdata)
                inx = np.argmin(peakdist)
                if peakdist[inx] < 0.005 * fwidth:
                    peak = self.allpeaks[inx, :]
                    # find fish:
                    foundfish = False
                    for finx, fish in enumerate(self.fishlist):
                        if np.min(np.abs(fish[:, 0] - peak[0])) < 0.8 * self.deltaf:
                            self.annotate_fish(fish, finx)
                            foundfish = True
                            break
                    if not foundfish:
                        self.annotate_peak(peak)
                        self.fig.canvas.draw()
                else:
                    self.fig.canvas.draw()

    def onpick(self, event):
        # print('pick')
        legendpoint = event.artist
        finx, fish = self.legenddict[legendpoint]
        self.annotate_fish(fish, finx)

    def resize(self, event):
        # print('resized', event.width, event.height)
        leftpixel = 80.0
        rightpixel = 20.0
        xaxispixel = 50.0
        toppixel = 20.0
        timeaxis = 0.42
        left = leftpixel / event.width
        width = 1.0 - left - rightpixel / event.width
        xaxis = xaxispixel / event.height
        top = toppixel / event.height
        height = (1.0 - timeaxis - top) / 2.0
        if left < 0.5 and width < 1.0 and xaxis < 0.3 and top < 0.2:
            self.axt.set_position([left, timeaxis + height, width, height])
            self.axs.set_position([left, timeaxis, width, height])
            self.axp.set_position([left, xaxis, width, timeaxis - 2.0 * xaxis])

    def plot_waveform(self):
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        name = self.filename.split('.')[0]
        if self.channel > 0:
            ax.set_title('{filename} channel={channel:d}'.format(
                filename=self.filename, channel=self.channel))
            figfile = '{name}-{channel:d}-{time:.4g}s-waveform.png'.format(
                name=name, channel=self.channel, time=self.toffset)
        else:
            ax.set_title(self.filename)
            figfile = '{name}-{time:.4g}s-waveform.png'.format(
                name=name, time=self.toffset)
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        if t1>len(self.data):
            t1 = len(self.data)
        time = np.arange(t0, t1) / self.samplerate
        if self.twindow < 1.0:
            ax.set_xlabel('Time [ms]')
            ax.set_xlim(1000.0 * self.toffset,
                        1000.0 * (self.toffset + self.twindow))
            ax.plot(1000.0 * time, self.data[t0:t1,self.channel])
        else:
            ax.set_xlabel('Time [s]')
            ax.set_xlim(self.toffset, self.toffset + self.twindow)
            ax.plot(time, self.data[t0:t1,self.channel])
        ax.set_ylabel('Amplitude [{:s}]'.format(self.unit))
        fig.tight_layout()
        fig.savefig(figfile)
        fig.clear()
        plt.close(fig)
        print('saved waveform figure to', figfile)

    def play_segment(self):
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        playdata = 1.0 * self.data[t0:t1,self.channel]
        fade(playdata, self.samplerate, 0.1)
        self.audio.play(playdata, self.samplerate, blocking=False)

    def save_segment(self):
        t0s = int(np.round(self.toffset))
        t1s = int(np.round(self.toffset + self.twindow))
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        savedata = 1.0 * self.data[t0:t1,self.channel]
        filename = self.filename.split('.')[0]
        segmentfilename = '{name}-{time0:.4g}s-{time1:.4g}s.wav'.format(
                name=filename, time0=t0s, time1 = t1s)
        write_audio(segmentfilename, savedata, self.data.samplerate)
        print('saved segment to: ' , segmentfilename)
        
    def play_all(self):
        self.audio.play(self.data[:,self.channel], self.samplerate,
                        blocking=False)
        
    def play_tone( self, frequency ) :
        self.audio.beep(1.0, frequency)

Methods

def remove_peak_annotation(self)
Expand source code
def remove_peak_annotation(self):
    for fm in self.peak_specmarker:
        fm.remove()
    self.peak_specmarker = []
    for fa in self.peak_annotation:
        fa.remove()
    self.peak_annotation = []
def annotate_peak(self, peak, harmonics=-1, inx=-1)
Expand source code
def annotate_peak(self, peak, harmonics=-1, inx=-1):
    # marker:
    if inx >= 0:
        m, = self.axs.plot([self.toffset + 0.01 * self.twindow], [peak[0]], linestyle='None',
                           color=self.colorrange[inx % len(self.colorrange)],
                           marker=self.markerrange[inx], ms=10.0, mec=None, mew=0.0, zorder=2)
    else:
        m, = self.axs.plot([self.toffset + 0.01 * self.twindow], [peak[0]], linestyle='None',
                           color='k', marker='o', ms=10.0, mec=None, mew=0.0, zorder=2)
    self.peak_specmarker.append(m)
    # annotation:
    fwidth = self.fmax - self.fmin
    pl = []
    pl.append(r'$f=$%.1f Hz' % peak[0])
    pl.append(r'$h=$%d' % harmonics)
    pl.append(r'$p=$%g' % peak[1])
    pl.append(r'$c=$%.0f' % peak[2])
    self.peak_annotation.append(self.axp.annotate('\n'.join(pl), xy=(peak[0], peak[1]),
                                                  xytext=(peak[0] + 0.03 * fwidth, peak[1]),
                                                  bbox=dict(boxstyle='round', facecolor='white'),
                                                  arrowprops=dict(arrowstyle='-')))
def annotate_fish(self, fish, inx=-1)
Expand source code
def annotate_fish(self, fish, inx=-1):
    self.remove_peak_annotation()
    for harmonic, freq in enumerate(fish[:, 0]):
        peak = self.allpeaks[np.abs(self.allpeaks[:, 0] - freq) < 0.8 * self.deltaf, :]
        if len(peak) > 0:
            self.annotate_peak(peak[0, :], harmonic, inx)
    self.fig.canvas.draw()
def update_plots(self, draw=True)
Expand source code
def update_plots(self, draw=True):
    self.remove_peak_annotation()
    # trace:
    self.axt.set_xlim(self.toffset, self.toffset + self.twindow)
    t0 = int(np.round(self.toffset * self.samplerate))
    t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
    if t1>len(self.data):
        t1 = len(self.data)
    time = np.arange(t0, t1) / self.samplerate
    if self.trace_artist == None:
        self.trace_artist, = self.axt.plot(time, self.data[t0:t1,self.channel])
    else:
        self.trace_artist.set_data(time, self.data[t0:t1,self.channel])
    self.axt.set_ylim(self.ymin, self.ymax)

    # compute power spectrum:
    n_fft = nfft(self.samplerate, self.freq_resolution)
    t00 = t0
    t11 = t1
    w = t11 - t00
    minw = n_fft * (self.cfg.value('minPSDAverages') + 1) // 2
    if t11 - t00 < minw:
        w = minw
        t11 = t00 + w
    if t11 >= len(self.data):
        t11 = len(self.data)
        t00 = t11 - w
    if t00 < 0:
        t00 = 0
        t11 = w
    freqs, power = psd(self.data[t00:t11,self.channel], self.samplerate,
                       self.freq_resolution, detrend=ml.detrend_mean)
    self.deltaf = freqs[1] - freqs[0]
    # detect fish:
    h_kwargs = psd_peak_detection_args(self.cfg)
    h_kwargs.update(harmonic_groups_args(self.cfg))
    self.fishlist, fzero_harmonics, self.mains, self.allpeaks, peaks, lowth, highth, center = harmonic_groups(freqs, power, verbose=self.verbose, **h_kwargs)
    highth = center + highth - 0.5 * lowth
    lowth = center + 0.5 * lowth

    # spectrogram:
    t2 = t1 + n_fft
    freqs, bins, specpower = spectrogram(self.data[t0:t2,self.channel],
                                         self.samplerate,
                                         self.freq_resolution,
                                         detrend=ml.detrend_mean)
    z = decibel(specpower)
    z = np.flipud(z)
    extent = self.toffset, self.toffset + np.amax(bins), freqs[0], freqs[-1]
    self.axs.set_xlim(self.toffset, self.toffset + self.twindow)
    if self.spectrogram_artist == None:
        self.fmax = np.round((freqs[-1] / 4.0) / 100.0) * 100.0
        min = highth
        min = np.percentile(z, 70.0)
        max = np.percentile(z, 99.9) + 30.0
        # cm = plt.get_cmap( 'hot_r' )
        cm = plt.get_cmap('jet')
        self.spectrogram_artist = self.axs.imshow(z, aspect='auto',
                                                  extent=extent, vmin=min, vmax=max,
                                                  cmap=cm, zorder=1)
    else:
        self.spectrogram_artist.set_data(z)
        self.spectrogram_artist.set_extent(extent)
    self.axs.set_ylim(self.fmin, self.fmax)

    # power spectrum:
    self.axp.set_xlim(self.fmin, self.fmax)
    if self.deltaf >= 1000.0:
        dfs = '%.3gkHz' % 0.001 * self.deltaf
    else:
        dfs = '%.3gHz' % self.deltaf
    tw = float(w) / self.samplerate
    if tw < 1.0:
        tws = '%.3gms' % (1000.0 * tw)
    else:
        tws = '%.3gs' % (tw)
    a = 2 * w // n_fft - 1  # number of ffts
    m = ''
    if self.cfg.value('mainsFreq') > 0.0:
        m = ', mains=%.0fHz' % self.cfg.value('mainsFreq')
    if self.power_frequency_label == None:
        self.power_frequency_label = self.axp.set_xlabel(
            r'Frequency [Hz] (nfft={:d}, $\Delta f$={:s}: T={:s}/{:d}{:s})'.format(n_fft, dfs, tws, a, m))
    else:
        self.power_frequency_label.set_text(
            r'Frequency [Hz] (nfft={:d}, $\Delta f$={:s}: T={:s}/{:d}{:s})'.format(n_fft, dfs, tws, a, m))
    self.axp.set_xlim(self.fmin, self.fmax)
    if self.power_label == None:
        self.power_label = self.axp.set_ylabel('Power')
    if self.decibel:
        if len(self.allpeaks) > 0:
            self.allpeaks[:, 1] = decibel(self.allpeaks[:, 1])
        power = decibel(power)
        pmin = np.min(power[freqs < self.fmax])
        pmin = np.floor(pmin / 10.0) * 10.0
        pmax = np.max(power[freqs < self.fmax])
        pmax = np.ceil(pmax / 10.0) * 10.0
        doty = pmax - 5.0
        self.power_label.set_text('Power [dB]')
        self.axp.set_ylim(pmin, pmax)
    else:
        pmax = np.max(power[freqs < self.fmax])
        doty = pmax
        pmax *= 1.1
        self.power_label.set_text('Power')
        self.axp.set_ylim(0.0, pmax)
    if self.all_peaks_artis == None:
        self.all_peaks_artis, = self.axp.plot(self.allpeaks[:, 0],
                                              np.zeros(len(self.allpeaks[:, 0])) + doty,
                                              'o', color='#ffffff')
        self.good_peaks_artist, = self.axp.plot(peaks, np.zeros(len(peaks)) + doty,
                                                'o', color='#888888')
    else:
        self.all_peaks_artis.set_data(self.allpeaks[:, 0],
                                      np.zeros(len(self.allpeaks[:, 0])) + doty)
        self.good_peaks_artist.set_data(peaks, np.zeros(len(peaks)) + doty)
    labels = []
    fsizes = [np.sqrt(np.sum(self.fishlist[k][:, 1])) for k in range(len(self.fishlist))]
    fmaxsize = np.max(fsizes) if len(fsizes) > 0 else 1.0
    for k in range(len(self.peak_artists)):
        self.peak_artists[k].remove()
    self.peak_artists = []
    for k in range(len(self.fishlist)):
        if k >= len(self.markerrange):
            break
        fpeaks = self.fishlist[k][:, 0]
        fpeakinx = [int(np.round(fp / self.deltaf)) for fp in fpeaks if fp < freqs[-1]]
        fsize = 7.0 + 10.0 * (fsizes[k] / fmaxsize) ** 0.5
        fishpoints, = self.axp.plot(fpeaks[:len(fpeakinx)], power[fpeakinx], linestyle='None',
                                    color=self.colorrange[k % len(self.colorrange)],
                                    marker=self.markerrange[k], ms=fsize,
                                    mec=None, mew=0.0, zorder=1)
        self.peak_artists.append(fishpoints)
        if self.deltaf < 0.1:
            labels.append('%4.2f Hz' % fpeaks[0])
        elif self.deltaf < 1.0:
            labels.append('%4.1f Hz' % fpeaks[0])
        else:
            labels.append('%4.0f Hz' % fpeaks[0])
    if len(self.mains) > 0:
        fpeaks = self.mains[:, 0]
        fpeakinx = np.array([np.round(fp / self.deltaf) for fp in fpeaks if fp < freqs[-1]], dtype=int)
        fishpoints, = self.axp.plot(fpeaks[:len(fpeakinx)],
                                    power[fpeakinx], linestyle='None',
                                    marker='.', color='k', ms=10, mec=None, mew=0.0, zorder=2)
        self.peak_artists.append(fishpoints)
        labels.append('%3.0f Hz mains' % self.cfg.value('mainsFreq'))
    ncol = (len(labels)-1) // 8 + 1
    self.legendhandle = self.axs.legend(self.peak_artists[:len(labels)], labels, loc='upper right', ncol=ncol)
    self.legenddict = dict()
    for legpoints, (finx, fish) in zip(self.legendhandle.get_lines(), enumerate(self.fishlist)):
        legpoints.set_picker(8)
        self.legenddict[legpoints] = [finx, fish]
    self.legendhandle.set_visible(self.legend)
    if self.power_artist == None:
        self.power_artist, = self.axp.plot(freqs, power, 'b', zorder=3)
    else:
        self.power_artist.set_data(freqs, power)
    if draw:
        self.fig.canvas.draw()
def keypress(self, event)
Expand source code
def keypress(self, event):
    # print('pressed', event.key)
    if event.key in '+=X':
        if self.twindow * self.samplerate > 20:
            self.twindow *= 0.5
            self.update_plots()
    elif event.key in '-x':
        if self.twindow < len(self.data) / self.samplerate:
            self.twindow *= 2.0
            self.update_plots()
    elif event.key == 'pagedown':
        if self.toffset + 0.5 * self.twindow < len(self.data) / self.samplerate:
            self.toffset += 0.5 * self.twindow
            self.update_plots()
    elif event.key == 'pageup':
        if self.toffset > 0:
            self.toffset -= 0.5 * self.twindow
            if self.toffset < 0.0:
                self.toffset = 0.0
            self.update_plots()
    elif event.key == 'a':
        if self.min_clip == 0.0 or self.max_clip == 0.0:
            self.min_clip, self.max_clip = clip_amplitudes(
                self.data[:,self.channel],
                **clip_args(self.cfg, self.samplerate))
        try:
            if self.cfg.value('windowSize') <= 0.0:
                self.cfg.set('windowSize', (len(self.data)-1)/self.samplerate)
            idx0, idx1, clipped = best_window_indices(
                self.data[:,self.channel], self.samplerate,
                min_clip=self.min_clip, max_clip=self.max_clip,
                **best_window_args(self.cfg))
            if idx1 > 0:
                self.toffset = idx0 / self.samplerate
                self.twindow = (idx1 - idx0) / self.samplerate
                self.twindow *= 2.0/(self.cfg.value('numberPSDWindows')+1.0)
                self.update_plots()
        except UserWarning as e:
            if self.verbose > 0:
                print(str(e))
    elif event.key == 'ctrl+pagedown':
        if self.toffset + 5.0 * self.twindow < len(self.data) / self.samplerate:
            self.toffset += 5.0 * self.twindow
            self.update_plots()
    elif event.key == 'ctrl+pageup':
        if self.toffset > 0:
            self.toffset -= 5.0 * self.twindow
            if self.toffset < 0.0:
                self.toffset = 0.0
            self.update_plots()
    elif event.key == 'down':
        if self.toffset + self.twindow < len(self.data) / self.samplerate:
            self.toffset += 0.05 * self.twindow
            self.update_plots()
    elif event.key == 'up':
        if self.toffset > 0.0:
            self.toffset -= 0.05 * self.twindow
            if self.toffset < 0.0:
                self.toffset = 0.0
            self.update_plots()
    elif event.key == 'home':
        if self.toffset > 0.0:
            self.toffset = 0.0
            self.update_plots()
    elif event.key == 'end':
        toffs = np.floor(len(self.data) / self.samplerate / self.twindow) * self.twindow
        if self.toffset < toffs:
            self.toffset = toffs
            self.update_plots()
    elif event.key == 'y':
        h = self.ymax - self.ymin
        c = 0.5 * (self.ymax + self.ymin)
        self.ymin = c - h
        self.ymax = c + h
        self.axt.set_ylim(self.ymin, self.ymax)
        self.fig.canvas.draw()
    elif event.key == 'Y':
        h = 0.25 * (self.ymax - self.ymin)
        c = 0.5 * (self.ymax + self.ymin)
        self.ymin = c - h
        self.ymax = c + h
        self.axt.set_ylim(self.ymin, self.ymax)
        self.fig.canvas.draw()
    elif event.key == 'v':
        t0 = int(np.round(self.toffset * self.samplerate))
        t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
        min = np.min(self.data[t0:t1,self.channel])
        max = np.max(self.data[t0:t1,self.channel])
        h = 0.5 * (max - min)
        c = 0.5 * (max + min)
        self.ymin = c - h
        self.ymax = c + h
        self.axt.set_ylim(self.ymin, self.ymax)
        self.fig.canvas.draw()
    elif event.key == 'V':
        self.ymin = -1.0
        self.ymax = +1.0
        self.axt.set_ylim(self.ymin, self.ymax)
        self.fig.canvas.draw()
    elif event.key == 'left':
        if self.fmin > 0.0:
            fwidth = self.fmax - self.fmin
            self.fmin -= 0.5 * fwidth
            self.fmax -= 0.5 * fwidth
            if self.fmin < 0.0:
                self.fmin = 0.0
                self.fmax = fwidth
            self.axs.set_ylim(self.fmin, self.fmax)
            self.axp.set_xlim(self.fmin, self.fmax)
            self.fig.canvas.draw()
    elif event.key == 'right':
        if self.fmax < 0.5 * self.samplerate:
            fwidth = self.fmax - self.fmin
            self.fmin += 0.5 * fwidth
            self.fmax += 0.5 * fwidth
            self.axs.set_ylim(self.fmin, self.fmax)
            self.axp.set_xlim(self.fmin, self.fmax)
            self.fig.canvas.draw()
    elif event.key == 'ctrl+left':
        if self.fmin > 0.0:
            fwidth = self.fmax - self.fmin
            self.fmin = 0.0
            self.fmax = fwidth
            self.axs.set_ylim(self.fmin, self.fmax)
            self.axp.set_xlim(self.fmin, self.fmax)
            self.fig.canvas.draw()
    elif event.key == 'ctrl+right':
        if self.fmax < 0.5 * self.samplerate:
            fwidth = self.fmax - self.fmin
            fm = 0.5 * self.samplerate
            self.fmax = np.ceil(fm / fwidth) * fwidth
            self.fmin = self.fmax - fwidth
            if self.fmin < 0.0:
                self.fmin = 0.0
                self.fmax = fwidth
            self.axs.set_ylim(self.fmin, self.fmax)
            self.axp.set_xlim(self.fmin, self.fmax)
            self.fig.canvas.draw()
    elif event.key in 'f':
        if self.fmax < 0.5 * self.samplerate or self.fmin > 0.0:
            fwidth = self.fmax - self.fmin
            if self.fmax < 0.5 * self.samplerate:
                self.fmax = self.fmin + 2.0 * fwidth
            elif self.fmin > 0.0:
                self.fmin = self.fmax - 2.0 * fwidth
                if self.fmin < 0.0:
                    self.fmin = 0.0
                    self.fmax = 2.0 * fwidth
            self.axs.set_ylim(self.fmin, self.fmax)
            self.axp.set_xlim(self.fmin, self.fmax)
            self.fig.canvas.draw()
    elif event.key in 'F':
        if self.fmax - self.fmin > 1.0:
            fwidth = self.fmax - self.fmin
            self.fmax = self.fmin + 0.5 * fwidth
            self.axs.set_ylim(self.fmin, self.fmax)
            self.axp.set_xlim(self.fmin, self.fmax)
            self.fig.canvas.draw()
    elif event.key in 'r':
        if self.freq_resolution < 1000.0:
            self.freq_resolution *= 2.0
            self.update_plots()
    elif event.key in 'R':
        if 1.0 / self.freq_resolution < self.tmax:
            self.freq_resolution *= 0.5
            self.update_plots()
    elif event.key in 'd':
        self.decibel = not self.decibel
        self.update_plots()
    elif event.key in 'm':
        if self.cfg.value('mainsFreq') == 0.0:
            self.cfg.set('mainsFreq', self.mains_freq)
        else:
            self.cfg.set('mainsFreq', 0.0)
        self.update_plots()
    elif event.key in 't':
        t_diff = self.cfg.value('highThresholdFactor') - self.cfg.value('lowThresholdFactor')
        self.cfg.set('lowThresholdFactor', self.cfg.value('lowThresholdFactor') - 0.1)
        if self.cfg.value('lowThresholdFactor') < 0.1:
            self.cfg.set('lowThresholdFactor', 0.1)
        self.cfg.set('highThresholdFactor', self.cfg.value('lowThresholdFactor') + t_diff)
        print('lowThresholdFactor =', self.cfg.value('lowThresholdFactor'))
        self.update_plots()
    elif event.key in 'T':
        t_diff = self.cfg.value('highThresholdFactor') - self.cfg.value('lowThresholdFactor')
        self.cfg.set('lowThresholdFactor', self.cfg.value('lowThresholdFactor') + 0.1)
        if self.cfg.value('lowThresholdFactor') > 20.0:
            self.cfg.set('lowThresholdFactor', 20.0)
        self.cfg.set('highThresholdFactor', self.cfg.value('lowThresholdFactor') + t_diff)
        print('lowThresholdFactor =', self.cfg.value('lowThresholdFactor'))
        self.update_plots()
    elif event.key == 'escape':
        self.remove_peak_annotation()
        self.fig.canvas.draw()
    elif event.key in 'h':
        self.help = not self.help
        for ht in self.helptext:
            ht.set_visible(self.help)
        self.fig.canvas.draw()
    elif event.key in 'l':
        self.legend = not self.legend
        self.legendhandle.set_visible(self.legend)
        self.fig.canvas.draw()
    elif event.key in 'w':
        self.plot_waveform()
    elif event.key in 'p':
        self.play_segment()
    elif event.key in 'P':
        self.play_all()
    elif event.key in '1' :
        self.play_tone('c3')
    elif event.key in '2' :
        self.play_tone('a3')
    elif event.key in '3' :
        self.play_tone('e4')
    elif event.key in '4' :
        self.play_tone('a4')
    elif event.key in '5' :
        self.play_tone('c5')
    elif event.key in '6' :
        self.play_tone('e5')
    elif event.key in '7' :
        self.play_tone('g5')
    elif event.key in '8' :
        self.play_tone('a5')
    elif event.key in '9' :
        self.play_tone('c6')
    elif event.key in 'S':
        self.save_segment()
def buttonpress(self, event)
Expand source code
def buttonpress( self, event ) :
    # print('mouse pressed', event.button, event.key, event.step)
    if event.inaxes == self.axp:
        if event.key == 'shift' or event.key == 'control':
            # show next or previous harmonic:
            if event.key == 'shift':
                if event.button == 1:
                    ftarget = event.xdata / 2.0
                elif event.button == 3:
                    ftarget = event.xdata * 2.0
            else:
                if event.button == 1:
                    ftarget = event.xdata / 1.5
                elif event.button == 3:
                    ftarget = event.xdata * 1.5
            foffs = event.xdata - self.fmin
            fwidth = self.fmax - self.fmin
            self.fmin = ftarget - foffs
            self.fmax = self.fmin + fwidth
            self.axs.set_ylim(self.fmin, self.fmax)
            self.axp.set_xlim(self.fmin, self.fmax)
            self.fig.canvas.draw()
        else:
            # put label on peak
            self.remove_peak_annotation()
            # find closest peak:
            fwidth = self.fmax - self.fmin
            peakdist = np.abs(self.allpeaks[:, 0] - event.xdata)
            inx = np.argmin(peakdist)
            if peakdist[inx] < 0.005 * fwidth:
                peak = self.allpeaks[inx, :]
                # find fish:
                foundfish = False
                for finx, fish in enumerate(self.fishlist):
                    if np.min(np.abs(fish[:, 0] - peak[0])) < 0.8 * self.deltaf:
                        self.annotate_fish(fish, finx)
                        foundfish = True
                        break
                if not foundfish:
                    self.annotate_peak(peak)
                    self.fig.canvas.draw()
            else:
                self.fig.canvas.draw()
def onpick(self, event)
Expand source code
def onpick(self, event):
    # print('pick')
    legendpoint = event.artist
    finx, fish = self.legenddict[legendpoint]
    self.annotate_fish(fish, finx)
def resize(self, event)
Expand source code
def resize(self, event):
    # print('resized', event.width, event.height)
    leftpixel = 80.0
    rightpixel = 20.0
    xaxispixel = 50.0
    toppixel = 20.0
    timeaxis = 0.42
    left = leftpixel / event.width
    width = 1.0 - left - rightpixel / event.width
    xaxis = xaxispixel / event.height
    top = toppixel / event.height
    height = (1.0 - timeaxis - top) / 2.0
    if left < 0.5 and width < 1.0 and xaxis < 0.3 and top < 0.2:
        self.axt.set_position([left, timeaxis + height, width, height])
        self.axs.set_position([left, timeaxis, width, height])
        self.axp.set_position([left, xaxis, width, timeaxis - 2.0 * xaxis])
def plot_waveform(self)
Expand source code
def plot_waveform(self):
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    name = self.filename.split('.')[0]
    if self.channel > 0:
        ax.set_title('{filename} channel={channel:d}'.format(
            filename=self.filename, channel=self.channel))
        figfile = '{name}-{channel:d}-{time:.4g}s-waveform.png'.format(
            name=name, channel=self.channel, time=self.toffset)
    else:
        ax.set_title(self.filename)
        figfile = '{name}-{time:.4g}s-waveform.png'.format(
            name=name, time=self.toffset)
    t0 = int(np.round(self.toffset * self.samplerate))
    t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
    if t1>len(self.data):
        t1 = len(self.data)
    time = np.arange(t0, t1) / self.samplerate
    if self.twindow < 1.0:
        ax.set_xlabel('Time [ms]')
        ax.set_xlim(1000.0 * self.toffset,
                    1000.0 * (self.toffset + self.twindow))
        ax.plot(1000.0 * time, self.data[t0:t1,self.channel])
    else:
        ax.set_xlabel('Time [s]')
        ax.set_xlim(self.toffset, self.toffset + self.twindow)
        ax.plot(time, self.data[t0:t1,self.channel])
    ax.set_ylabel('Amplitude [{:s}]'.format(self.unit))
    fig.tight_layout()
    fig.savefig(figfile)
    fig.clear()
    plt.close(fig)
    print('saved waveform figure to', figfile)
def play_segment(self)
Expand source code
def play_segment(self):
    t0 = int(np.round(self.toffset * self.samplerate))
    t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
    playdata = 1.0 * self.data[t0:t1,self.channel]
    fade(playdata, self.samplerate, 0.1)
    self.audio.play(playdata, self.samplerate, blocking=False)
def save_segment(self)
Expand source code
def save_segment(self):
    t0s = int(np.round(self.toffset))
    t1s = int(np.round(self.toffset + self.twindow))
    t0 = int(np.round(self.toffset * self.samplerate))
    t1 = int(np.round((self.toffset + self.twindow) * self.samplerate))
    savedata = 1.0 * self.data[t0:t1,self.channel]
    filename = self.filename.split('.')[0]
    segmentfilename = '{name}-{time0:.4g}s-{time1:.4g}s.wav'.format(
            name=filename, time0=t0s, time1 = t1s)
    write_audio(segmentfilename, savedata, self.data.samplerate)
    print('saved segment to: ' , segmentfilename)
def play_all(self)
Expand source code
def play_all(self):
    self.audio.play(self.data[:,self.channel], self.samplerate,
                    blocking=False)
def play_tone(self, frequency)
Expand source code
def play_tone( self, frequency ) :
    self.audio.beep(1.0, frequency)