Module thunderlab.tabledata

Tables with hierarchical headers and units

Classes

  • class TableData: tables with hierarchical header including units and column-specific formats. Kind of similar to a pandas data frame, but without index column and with intuitive numpy-style indexing and nicely formatted output to csv, markdown, html, and latex.

Helper functions

  • write(): shortcut for constructing and writing a TableData.
  • latex_unit(): translate unit string into SIunit LaTeX code.
  • index2aa(): convert an integer into an alphabetical representation.
  • aa2index(): convert an alphabetical representation to an index.

Configuration

  • add_write_table_config(): add parameter specifying how to write a table to a file as a new section to a configuration.
  • write_table_args(): translates a configuration to the respective parameter names for writing a table to a file.

Global variables

var default_missing_str

Default string indicating nan data elements when outputting data.

var default_missing_inputs

Default strings that are translated to nan when loading table data.

Functions

def add_write_table_config(cfg,
table_format=None,
delimiter=None,
unit_style=None,
column_numbers=None,
sections=None,
align_columns=None,
shrink_width=True,
missing='-',
center_columns=False,
latex_label_command='',
latex_merge_std=False)
Expand source code
def add_write_table_config(cfg, table_format=None, delimiter=None,
                           unit_style=None, column_numbers=None,
                           sections=None, align_columns=None,
                           shrink_width=True, missing='-',
                           center_columns=False,
                           latex_label_command='',
                           latex_merge_std=False):
    """Add parameter specifying how to write a table to a file as a new
section to a configuration.

    Parameters
    ----------
    cfg: ConfigFile
        The configuration.
    """

    cfg.add_section('File format for storing analysis results:')
    cfg.add('fileFormat', table_format or 'auto', '', 'Default file format used to store analysis results.\nOne of %s.' % ', '.join(TableData.formats))
    cfg.add('fileDelimiter', delimiter or 'auto', '', 'String used to separate columns or "auto".')
    cfg.add('fileUnitStyle', unit_style or 'auto', '', 'Add units as extra row ("row"), add units to header label separated by "/" ("header"), do not print out units ("none"), or "auto".')
    cfg.add('fileColumnNumbers', column_numbers or 'none', '', 'Add line with column indices ("index", "num", "aa", "AA", or "none")')
    cfg.add('fileSections', sections or 'auto', '', 'Maximum number of section levels or "auto"')
    cfg.add('fileAlignColumns', align_columns or 'auto', '', 'If True, write all data of a column using the same width, if False write the data without any white space, or "auto".')
    cfg.add('fileShrinkColumnWidth', shrink_width, '', 'Allow to make columns narrower than specified by the corresponding format strings.')
    cfg.add('fileMissing', missing, '', 'String used to indicate missing data values.')
    cfg.add('fileCenterColumns', center_columns, '', 'Center content of all columns instead of left align columns of strings and right align numbers (markdown, html, and latex).')
    cfg.add('fileLaTeXLabelCommand', latex_label_command, '', 'LaTeX command name for formatting column labels of the table header.')
    cfg.add('fileLaTeXMergeStd', latex_merge_std, '', 'Merge header of columns with standard deviations with previous column (LaTeX tables only).')

Add parameter specifying how to write a table to a file as a new section to a configuration.

Parameters
----------
cfg: ConfigFile
    The configuration.
def write_table_args(cfg)
Expand source code
def write_table_args(cfg):
    """Translates a configuration to the respective parameter names for
writing a table to a file.
    
    The return value can then be passed as key-word arguments to TableData.write().

    Parameters
    ----------
    cfg: ConfigFile
        The configuration.

    Returns
    -------
    a: dict
        Dictionary with names of arguments of the `TableData.write` function
        and their values as supplied by `cfg`.
    """
    d = cfg.map({'table_format': 'fileFormat',
                 'delimiter': 'fileDelimiter',
                 'unit_style': 'fileUnitStyle',
                 'column_numbers': 'fileColumnNumbers',
                 'sections': 'fileSections',
                 'align_columns': 'fileAlignColumns',
                 'shrink_width': 'fileShrinkColumnWidth',
                 'missing': 'fileMissing',
                 'center_columns': 'fileCenterColumns',
                 'latex_label_command': 'fileLaTeXLabelCommand',
                 'latex_merge_std': 'fileLaTeXMergeStd'})
    if 'sections' in d:
        if d['sections'] != 'auto':
            d['sections'] = int(d['sections'])
    return d

Translates a configuration to the respective parameter names for writing a table to a file.

The return value can then be passed as key-word arguments to TableData.write().

Parameters
----------
cfg: ConfigFile
    The configuration.

Returns
-------
a: dict
    Dictionary with names of arguments of the <code><a title="thunderlab.tabledata.TableData.write" href="#thunderlab.tabledata.TableData.write">TableData.write()</a></code> function
    and their values as supplied by <code>cfg</code>.
def latex_unit(unit, unit_package=None)
Expand source code
def latex_unit(unit, unit_package=None):
    """Translate unit string into LaTeX code.
    
    Parameters
    ----------
    unit: str
        String denoting a unit.
    unit_package: None or 'siunitx' or 'SIunit'
        Translate unit string for the specified LaTeX package.
        If None set sub- and superscripts in text mode.
        
    Returns
    -------
    unit: str
        Unit string as valid LaTeX code.
    """
    si_prefixes = {'y': '\\yocto',
                  'z': '\\zepto',
                  'a': '\\atto',
                  'f': '\\femto',
                  'p': '\\pico',
                  'n': '\\nano',
                  'u': '\\micro',
                  'm': '\\milli',
                  'c': '\\centi',
                  'd': '\\deci',
                  'h': '\\hecto',
                  'k': '\\kilo',
                  'M': '\\mega',
                  'G': '\\giga',
                  'T': '\\tera',
                  'P': '\\peta',
                  'E': '\\exa',
                  'Z': '\\zetta',
                  'Y': '\\yotta' }
    si_units = {'m': '\\metre',
               'g': '\\gram',
               's': '\\second',
               'A': '\\ampere',
               'K': '\\kelvin',
               'mol': '\\mole',
               'M': '\\mole',
               'cd': '\\candela',
               'Hz': '\\hertz',
               'N': '\\newton',
               'Pa': '\\pascal',
               'J': '\\joule',
               'W': '\\watt',
               'C': '\\coulomb',
               'V': '\\volt',
               'F': '\\farad',
               'O': '\\ohm',
               'S': '\\siemens',
               'Wb': '\\weber',
               'T': '\\tesla',
               'H': '\\henry',
               'C': '\\celsius',
               'lm': '\\lumen',
               'lx': '\\lux',
               'Bq': '\\becquerel',
               'Gv': '\\gray',
               'Sv': '\\sievert'}
    other_units = {"'": '\\arcminute',
               "''": '\\arcsecond',
               'a': '\\are',
               'd': '\\dday',
               'eV': '\\electronvolt',
               'ha': '\\hectare',
               'h': '\\hour',
               'L': '\\liter',
               'l': '\\litre',
               'min': '\\minute',
               'Np': '\\neper',
               'rad': '\\rad',
               't': '\\ton',
               '%': '\\%'}
    unit_powers = {'^2': '\\squared',
              '^3': '\\cubed',
              '/': '\\per',
              '^-1': '\\power{}{-1}',
              '^-2': '\\rpsquared',
              '^-3': '\\rpcubed'}
    if unit_package is None:
        # without any unit package:
        units = ''
        k = 0
        while k < len(unit):
            if unit[k] == '^':
                j = k + 1
                while j < len(unit) and (unit[j] == '-' or unit[j].isdigit()):
                    j += 1
                units = units + '$^{\\text{' + unit[k + 1:j] + '}}$'
                k = j
            elif unit[k] == '_':
                j = k + 1
                while j < len(unit) and not unit[j].isspace():
                    j += 1
                units = units + '$_{\\text{' + unit[k + 1:j] + '}}$'
                k = j
            else:
                units = units + unit[k]
                k += 1
    elif unit_package.lower() in ['siunit', 'siunitx']:
        # use SIunit package:
        if '\\' in unit:   # this string is already translated!
            return unit
        units = ''
        j = len(unit)
        while j >= 0:
            for k in range(-3, 0):
                if j+k < 0:
                    continue
                uss = unit[j+k:j]
                if uss in unit_powers:
                    units = unit_powers[uss] + units
                    break
                elif uss in other_units:
                    units = other_units[uss] + units
                    break
                elif uss in si_units:
                    units = si_units[uss] + units
                    j = j+k
                    k = 0
                    if j - 1 >= 0:
                        uss = unit[j - 1:j]
                        if uss in si_prefixes:
                            units = si_prefixes[uss] + units
                            k = -1
                    break
            else:
                k = -1
                units = unit[j+k:j] + units
            j = j + k
        if unit_package.lower() == 'siunitx':
            units = '\\unit{' + units + '}'
    else:
        raise ValueError(f'latex_unit(): invalid unit_package={unit_package}!')
    return units

Translate unit string into LaTeX code.

Parameters

unit : str
String denoting a unit.
unit_package : None or 'siunitx' or 'SIunit'
Translate unit string for the specified LaTeX package. If None set sub- and superscripts in text mode.

Returns

unit : str
Unit string as valid LaTeX code.
def break_text(stream, text, maxc=80, indent=0)
Expand source code
def break_text(stream, text, maxc=80, indent=0):
    """Write text to stream and break lines at maximum character count.

    Parameters
    ----------
    stream: io
        Stream into which the text is written.
    text: str
        The text to be written to the stream.
    maxc: int
        Maximum character count for each line.
    indent: int
        Number of characters each line is indented.
    """
    nc = 0
    nw = 0
    stream.write(' '*indent)
    nc += indent
    for word in text.split():
        if nc + len(word) > maxc:
            stream.write('\n')
            nc = 0
            nw = 0
            stream.write(' '*indent)
            nc += indent
        if nw > 0:
            stream.write(' ')
            nc += 1
        stream.write(word)
        nc += len(word)
        nw += 1
    stream.write('\n')

Write text to stream and break lines at maximum character count.

Parameters

stream : io
Stream into which the text is written.
text : str
The text to be written to the stream.
maxc : int
Maximum character count for each line.
indent : int
Number of characters each line is indented.
def index2aa(n, a='a')
Expand source code
def index2aa(n, a='a'):
    """Convert an integer into an alphabetical representation.

    The integer number is converted into 'a', 'b', 'c', ..., 'z',
    'aa', 'ab', 'ac', ..., 'az', 'ba', 'bb', ...

    Inspired by https://stackoverflow.com/a/37604105

    Parameters
    ----------
    n: int
        An integer to be converted into alphabetical representation.
    a: str ('a' or 'A')
        Use upper or lower case characters.

    Returns
    -------
    ns: str
        Alphabetical represtnation of an integer.
    """
    d, m = divmod(n, 26)
    bm = chr(ord(a)+m)
    return index2aa(d - 1, a) + bm if d else bm

Convert an integer into an alphabetical representation.

The integer number is converted into 'a', 'b', 'c', …, 'z', 'aa', 'ab', 'ac', …, 'az', 'ba', 'bb', …

Inspired by https://stackoverflow.com/a/37604105

Parameters

n : int
An integer to be converted into alphabetical representation.
a : str ('a' or 'A')
Use upper or lower case characters.

Returns

ns : str
Alphabetical represtnation of an integer.
def aa2index(s)
Expand source code
def aa2index(s):
    """Convert an alphabetical representation to an index.

    The alphabetical representation 'a', 'b', 'c', ..., 'z',
    'aa', 'ab', 'ac', ..., 'az', 'ba', 'bb', ...
    is converted to an index starting with 0.

    Parameters
    ----------
    s: str
        Alphabetical representation of an index.

    Returns
    -------
    index: int
        The corresponding index.

    Raises
    ------
    ValueError:
        Invalid character in input string.
    """
    index = 0
    maxc = ord('z') - ord('a') + 1
    for c in s.lower():
        index *= maxc
        if ord(c) < ord('a') or ord(c) > ord('z'):
            raise ValueError('invalid character "%s" in string.' % c)
        index += ord(c) - ord('a') + 1
    return index - 1

Convert an alphabetical representation to an index.

The alphabetical representation 'a', 'b', 'c', …, 'z', 'aa', 'ab', 'ac', …, 'az', 'ba', 'bb', … is converted to an index starting with 0.

Parameters

s : str
Alphabetical representation of an index.

Returns

index : int
The corresponding index.

Raises

Valueerror

Invalid character in input string.

def main()
Expand source code
def main():
    # setup a table:
    df = TableData()
    df.append(["data", "specimen", "ID"], "", "%-s", value=list('ABCBAACB'))
    df.append("size", "m", "%6.2f", value=[2.34, 56.7, 8.9])
    df.append("full weight", "kg", "%.0f", value=122.8)
    df.append_section("all measures")
    df.append("speed", "m/s", "%.3g", value=98.7)
    df.append("median jitter", "mm", "%.1f", value=23)
    df.append("size", "g", "%.2e", value=1.234)
    df.set_descriptions({'ID': 'A unique identifier of a snake.',
                         'size': 'The total length of each snake.',
                         'full weight': 'Weight of each snake',
                         'speed': 'Maximum speed the snake can climb a tree.',
                         'median jitter': 'The jitter around a given path the snake should follow.',
                         'all measures>size': 'Weight of mouse the snake has eaten before.',
                         })
    df.add(np.nan, 2)  # single value
    df.add([0.543, 45, 1.235e2]) # remaining row
    df.add([43.21, 6789.1, 3405, 1.235e-4], 2) # next row
    a = 0.5*np.arange(1, 6)*np.random.randn(5, 5) + 10.0 + np.arange(5)
    df.add(a.T, 1) # rest of table
    #df[3:6,'weight'] = [11.0]*3
    df.insert('median jitter', 's.d.', 'm/s', '%.3g',
              'Standard deviation of all speeds',
              value=2*np.random.rand(df.rows()))
    
    # write out in all formats:
    for tf in TableData.formats:
        print('    - `%s`: %s' % (tf, TableData.descriptions[tf]))
        print('      ```')
        iout = IndentStream(sys.stdout, 4+2)
        df.write(iout, table_format=tf, latex_unit_package='siunitx',
                 latex_merge_std=True)
        print('      ```')
        print()

    # write descriptions:
    for tf in ['md', 'html', 'tex']:
        df.write_descriptions(table_format=tf, maxc=40)
        print()

    # aggregate demos:
    print(df)
    print(df.aggregate(np.mean, numbers_only=True))
    print(df.aggregate(dict(count=len, maximum=np.max), numbers_only=True))
    print(df.aggregate([np.mean, len, max],
                       ['size', 'full weight', 'speed'], 'statistics',
                       remove_nans=True, single_row=False))
    print(df.aggregate({('25%', '50%', '75%'):
                        (np.quantile, ([0.25, 0.6, 0.75],))},
                       numbers_only=True))
    
    print(df.statistics(single_row=False))
    print(df.statistics(single_row=True, remove_nans=True))
    print(df.statistics(remove_nans=True, by='ID'))

    # groupby demo:
    for name, values in df.groupby('ID'):
        print(name)
        print(values)
    print()

    # aggregrate on groups demo:
    print(df.aggregate(np.mean, by='ID'))
    print()

    # write descriptions:
    df.write_descriptions(table_format='md', section_headings=0)
    print()

Classes

class TableData (data=None,
header=None,
units=None,
formats=None,
descriptions=None,
missing=['na', 'NA', 'nan', 'NAN', '-'],
sep=None,
stop=None)
Expand source code
class TableData(object):
    """Table with numpy-style indexing and hierarchical header including units and formats.
    
    Parameters
    ----------
    data: str, stream, ndarray
        - a filename: load table from file with name `data`.
        - a stream/file handle: load table from that stream.
        - 1-D or 2-D ndarray of data: the data of the table.
          Requires als a specified `header`.
        - pandas data frame.
    header: TableData, dict, list of str, list of list of str
        Header labels for each column.
        See `set_labels()' for details.
    units: None, TableData, dict, list of str, str
        Optional unit strings for each column.
        See `set_units()' for details.
    formats: None, TableData, dict, list of str, str
        Optional format strings for each column.
        See `set_formats()' for details.
    descriptions: None, TableData, dict, list of str, str
        Optional description strings for each column.
        See `set_descriptions()' for details.
    missing: list of str
        Missing data are indicated by one of these strings.
    sep: str or None
        If `data` is a file, force `sep` as column separator.
    stop: str or None
        If a line matches `stop`, stop reading the file.  `stop`
        can be an empty string to stop reading at the first empty
        line.

    Manipulate table header
    -----------------------

    Each column of the table has a label (the name of the column), a
    unit, and a format specifier. Sections group columns into a hierarchy.

    - `__init__()`: initialize a TableData from data or a file.
    - `append()`: append column to the table.
    - `insert()`: insert a table column at a given position.
    - `remove()`: remove columns from the table.
    - `section()`: the section name of a specified column.
    - `set_section()`: set a section name.
    - `append_section()`: add sections to the table header.
    - `insert_section()`: insert a section at a given position of the table header.
    - `label()`: the name of a column.
    - `set_label()`: set the name of a column.
    - `set_labels()`: set the labels of some columns.
    - `unit()`: the unit of a column.
    - `set_unit()`: set the unit of a column.
    - `set_units()`: set the units of some columns.
    - `format()`: the format string of the column.
    - `set_format()`: set the format string of a column.
    - `set_formats()`: set the format strings of some columns.
    - `description()`: the description of a column.
    - `set_description()`: set the description of a column.
    - `set_descriptions()`: set the descriptions of some columns.

    For example:
    ```
    tf = TableData('data.csv')
    ```
    loads a table directly from a file. See `load()` for details.
    ```
    tf = TableData(np.random.randn(4,3), header=['aaa', 'bbb', 'ccc'], units=['m', 's', 'g'], formats='%.2f')    
    ```
    results in
    ``` plain
    aaa    bbb    ccc
    m      s      g    
     1.45   0.01   0.16
    -0.74  -0.58  -1.34
    -2.06   0.08   1.47
    -0.43   0.60   1.38
    ```

    A more elaborate way to construct a table is:
    ```
    df = TableData()
    # first column with section names and 3 data values:
    df.append(["data", "specimen", "size"], "m", "%6.2f",
              [2.34, 56.7, 8.9])
    # next columns with single data values:
    df.append("full weight", "kg", "%.0f", 122.8)
    df.append_section("all measures")
    df.append("speed", "m/s", "%.3g", 98.7)
    df.append("median jitter", "mm", "%.1f", 23)
    df.append("size", "g", "%.2e", 1.234)
    # add a missing value to the second column:
    df.add(np.nan, 1)
    # fill up the remaining columns of the row:
    df.add((0.543, 45, 1.235e2))
    # add data to the next row starting at the second column:
    df.add([43.21, 6789.1, 3405, 1.235e-4], 1) # next row
    ```
    results in
    ``` plain
    data
    specimen             all measures
    size    full weight  speed     median jitter  size
    m       kg           m/s       mm             g       
      2.34          123      98.7           23.0  1.23e+00
     56.70            -     0.543           45.0  1.24e+02
      8.90           43  6.79e+03         3405.0  1.23e-04
    ```
    
    Table columns
    -------------

    Columns can be specified by an index or by the name of a column. In
    table headers with sections the colum can be specified by the
    section names and the column name separated by '>'.
    
    - `index()`: the column index of a column specifier.
    - `__contains__()`: check for existence of a column.
    - `find_col()`: find the start and end index of a column specification.
    - `column_spec()`: full specification of a column with all its section names.
    - `column_head()`: the name, unit, and format of a column.
    - `table_header()`: the header of the table without content.

    For example:
    ```
    df.index('all measures>size)   # returns 4
    'speed' in df                       # is True
    ```

    Iterating over columns
    ----------------------

    A table behaves like an ordered dictionary with column names as
    keys and the data of each column as values.
    Iterating over a table goes over columns.
    Note, however, that the len() of a table is the number of rows,
    not the number of columns!
    
    - `keys()`: list of unique column keys for all available columns.
    - `values()`: list of column data corresponding to keys().
    - `items()`: generator over column names and the corresponding data.
    - `__iter__()`: initialize iteration over data columns.
    - `__next__()`: return unique column key of next column.
    - `data`: the table data as a list over columns each containing a list of data elements.

    For example:
    ```
    print('column specifications:')
    for c in range(df.columns()):
        print(df.column_spec(c))
    print('iterating over column specifications:')
    for c, k in enumerate(df):
        print(f'{c}: {k}')
    print('keys():')
    for c, k in enumerate(df.keys()):
        print(f'{c}: {k}')
    print('values():')
    for c, v in enumerate(df.values()):
        print(v)
    print('iterating over the table:')
    for v in df:
        print(v)
    ```
    results in
    ``` plain
    column specifications:
    data>specimen>size
    data>specimen>full weight
    data>all measures>speed
    data>all measures>median jitter
    data>all measures>size
    iterating over column specifications:
    0: data>specimen>size
    1: data>specimen>full weight
    2: data>all measures>speed
    3: data>all measures>median jitter
    4: data>all measures>size
    keys():
    0: data>specimen>size
    1: data>specimen>full weight
    2: data>all measures>speed
    3: data>all measures>median jitter
    4: data>all measures>size
    values():
    [2.34, 56.7, 8.9]
    [122.8, nan, 43.21]
    [98.7, 0.543, 6789.1]
    [23, 45, 3405]
    [1.234, 123.5, 0.0001235]
    iterating over the table:
    [2.34, 56.7, 8.9]
    [122.8, nan, 43.21]
    [98.7, 0.543, 6789.1]
    [23, 45, 3405]
    [1.234, 123.5, 0.0001235]
    ```

    Accessing data
    --------------

    In contrast to the iterator functions the [] operator treats the
    table as a 2D-array where the first index indicates the row and
    the second index the column.

    Rows are indexed by integer row numbers or boolean arrays.
    Columns are also indexed by integer column numbers, but in
    addition can be index by their names.

    A single index selects rows, unless it is specified by
    strings. Since strings can only specify column names, this selects
    whole columns.

    Like a numpy array the table can be sliced, and logical indexing can
    be used to select specific parts of the table.
    
    As for any function, columns can be specified as indices or strings.
    
    - `rows()`: the number of rows.
    - `columns()`: the number of columns.
    - `__len__()`: the number of rows.
    - `ndim`: always 2.
    - `size`: number of elements (sum of length of all data columns), can be smaller than `columns()*rows()`.
    - `shape`: number of rows and columns.
    - `row()`: a single row of the table as TableData.
    - `row_list()`: a single row of the table as list.
    - `row_data()`: a generator for iterating over rows of the table.
    - `row_dict()`: a single row of the table as dictionary.
    - `col()`: a single column of the table as TableData.
    - `__call__()`: a single column of the table as ndarray.
    - `__getitem__()`: data elements specified by slice.
    - `__setitem__()`: assign values to data elements specified by slice.
    - `__delitem__()`: delete data elements or whole columns or rows.
    - `array()`: the table data as a ndarray.
    - `data_frame()`: the table data as a pandas DataFrame.
    - `dicts()`: the table as a list of dictionaries.
    - `dict()`: the table as a dictionary.
    - `add()`: add data elements row-wise.
    - `append_data_column()`: append data elements to a column.
    - `set_column()`: set the column where to add data.
    - `fill_data()`: fill up all columns with missing data.
    - `clear_data()`: clear content of the table but keep header.
    - `clear()`: clear the table of any content and header information.
    - `key_value()`: a data element returned as a key-value pair.
    - `aggregate()`: apply functions to columns.
    - `groupby()`: iterate through unique values of columns.
    
    - `sort()`: sort the table rows in place.
    - `statistics()`: descriptive statistics of each column.

    For example:
    ```
    # single column:    
    df('size')      # data of 'size' column as ndarray
    df['size']      # data of 'size' column as ndarray
    df[:, 'size']   # data of 'size' column as ndarray
    df.col('size')  # table with the single column 'size'

    # single row:    
    df[2, :]   # table with data of only the third row
    df.row(2)  # table with data of only the third row

    # slices:
    df[2:5,['size','jitter']]          # sub-table
    df[2:5,['size','jitter']].array()  # ndarray with data only

    # logical indexing:
    df[df['speed'] > 100.0, 'size'] = 0.0 # set size to 0 if speed is > 100

    # delete:
    del df[3:6, 'weight']  # delete rows 3-6 from column 'weight'
    del df[3:5, :]         # delete rows 3-5 completeley
    del df[:, 'speed']     # remove column 'speed' from table
    del df['speed']        # remove column 'speed' from table
    df.remove('weight')    # remove column 'weigth' from table

    # sort and statistics:
    df.sort(['weight', 'jitter'])
    df.statistics()
    ```
    statistics() returns a table with standard descriptive statistics:
    ``` plain
    statistics  data
    -           specimen             all measures
    -           size    full weight  speed     median jitter  size
    -           m       kg           m/s       mm             g       
    mean         22.65           83   2.3e+03         1157.7  4.16e+01
    std          24.23           40  3.18e+03         1589.1  5.79e+01
    min           2.34           43     0.543           23.0  1.23e-04
    quartile1     5.62           83      49.6           34.0  6.17e-01
    median        8.90          123      98.7           45.0  1.23e+00
    quartile3    32.80            -  3.44e+03         1725.0  6.24e+01
    max          56.70          123  6.79e+03         3405.0  1.24e+02
    count         3.00            2         3            3.0  3.00e+00
    ```

    Write and load tables
    ---------------------

    Table data can be written to a variety of text-based formats
    including comma separated values, latex and html files.  Which
    columns are written can be controlled by the hide() and show()
    functions. TableData can be loaded from all the written file formats
    (except html), also directly via the constructor.
    
    - `hide()`: hide a column or a range of columns.
    - `hide_all()`: hide all columns.
    - `hide_empty_columns()`: hide all columns that do not contain data.
    - `show()`: show a column or a range of columns.
    - `write()`: write table to a file or stream.
    - `write_file_stream()`: write table to file or stream and return appropriate file name.
    - `__str__()`: write table to a string.
    - `write_descriptions()`: write column descriptions of the table to a file or stream.
    - `load()`: load table from file or stream.
    - `formats`: list of supported file formats for writing.
    - `descriptions`: dictionary with descriptions of the supported file formats.
    - `extensions`: dictionary with default filename extensions for each of the file formats.
    - `ext_formats`: dictionary mapping filename extensions to file formats.

    See documentation of the `write()` function for examples of the supported file formats.

    """
    
    formats = ['dat', 'ascii', 'csv', 'rtai', 'md', 'tex', 'html']
    """list of strings: Supported output formats."""
    
    descriptions = {'dat': 'data text file', 'ascii': 'ascii-art table',
                    'csv': 'comma separated values', 'rtai': 'rtai-style table',
                    'md': 'markdown', 'tex': 'latex tabular',
                    'html': 'html markup'}
    """dict: Decription of output formats corresponding to `formats`."""
    
    extensions = {'dat': 'dat', 'ascii': 'txt', 'csv': 'csv', 'rtai': 'dat',
                  'md': 'md', 'tex': 'tex', 'html': 'html'}
    """dict: Default file extensions for the output `formats`. """
    
    ext_formats = {'dat': 'dat', 'DAT': 'dat', 'txt': 'dat', 'TXT': 'dat',
                   'csv': 'csv', 'CSV': 'csv', 'md': 'md', 'MD': 'md',
                   'tex': 'tex', 'TEX': 'tex', 'html': 'html', 'HTML': 'html'}
    """dict: Mapping of file extensions to the output formats."""

    stdev_labels = ['sd', 'std', 's.d.', 'stdev', 'error']
    """list: column labels recognized as standard deviations."""

    def __init__(self, data=None, header=None, units=None, formats=None,
                 descriptions=None, missing=default_missing_inputs,
                 sep=None, stop=None):
        self.clear()
        if header is not None and len(header) > 0:
            for h in header:
                self.append(h)            
        if data is not None:
            if isinstance(data, TableData):
                self.ndim = data.ndim
                self.size = data.size
                self.shape = data.shape
                self.nsecs = data.nsecs
                self.setcol = data.setcol
                self.addcol = data.addcol
                for c in range(data.columns()):
                    self.header.append(list(data.header[c]))
                    self.units.append(data.units[c])
                    self.formats.append(data.formats[c])
                    self.descriptions.append(data.descriptions[c])
                    self.hidden.append(data.hidden[c])
                    self.data.append(list(data.data[c]))
                self.set_labels(header)
                self.set_units(units)
                self.set_formats(formats)
                self.set_descriptions(descriptions)
            elif has_pandas and isinstance(data, pd.DataFrame):
                for c, key in enumerate(data.keys()):
                    new_key = key
                    new_unit = ''
                    if '/' in key:
                        p = key.split('/')
                        new_key = p[0].strip()
                        new_unit = '/'.join(p[1:])
                    formats = '%s' if isinstance(values[0], str) else '%g'
                    values = data[key].tolist()
                    self.append(new_key, new_unit, formats, value=values)
                self.set_labels(header)
                self.set_units(units)
                self.set_formats(formats)
                self.set_descriptions(descriptions)
            elif isinstance(data, (list, tuple, np.ndarray)) and not \
                 (isinstance(data, np.ndarray) and len(data.shape) == 0):
                if len(data) > 0 and \
                   isinstance(data[0], (list, tuple, np.ndarray)) and not \
                   (isinstance(data[0], np.ndarray) and \
                    len(data[0].shape) == 0):
                    # 2D list, rows first:
                    for row in data:
                        for c, val in enumerate(row):
                            self.data[c].append(val)
                elif len(data) > 0 and isinstance(data[0], dict):
                    # list of dictionaries:
                    for d in data:
                        self._add_dict(d, True)
                    self.fill_data()
                    self.set_labels(header)
                    self.set_units(units)
                    self.set_formats(formats)
                    self.set_descriptions(descriptions)
                else:
                    # 1D list:
                    for c, val in enumerate(data):
                        self.data[c].append(val)
            elif isinstance(data, (dict)):
                self._add_dict(data, True)
                self.fill_data()
                self.set_labels(header)
                self.set_units(units)
                self.set_formats(formats)
                self.set_descriptions(descriptions)
            else:
                self.load(data, missing, sep, stop)
                self.set_labels(header)
                self.set_units(units)
                self.set_formats(formats)
                self.set_descriptions(descriptions)
            # fill in missing units and formats:
            for k in range(len(self.header)):
                if self.units[k] is None:
                    self.units[k] = ''
                if self.formats[k] is None:
                    self.formats[k] = '%g'
                if self.descriptions[k] is None:
                    self.descriptions[k] = ''

    def __recompute_shape(self):
        self.size = sum(map(len, self.data))
        self.shape = (self.rows(), self.columns())
        
    def append(self, label, unit=None, formats=None, description=None,
               value=None, fac=None, key=None):
        """Append column to the table.

        Parameters
        ----------
        label: str or list of str
            Optional section titles and the name of the column.
        unit: str or None
            The unit of the column contents.
        formats: str or None
            The C-style format string used for printing out the column content, e.g.
            '%g', '%.2f', '%s', etc.
            If None, the format is set to '%g'.
        description: str or None
            The description of the column contents.
        value: None, float, int, str, etc. or list thereof, or list of dict
            If not None, data for the column.
            If list of dictionaries, extract from each dictionary in the list
            the value specified by `key`. If `key` is `None` use `label` as
            the key.
        fac: float
            If not None, multiply the data values by this number.
        key: None or key of a dictionary
            If not None and `value` is a list of dictionaries,
            extract from each dictionary in the list the value specified
            by `key` and assign the resulting list as data to the column.

        Returns
        -------
        self: TableData
            This TableData
        """
        if self.addcol >= len(self.data):
            if isinstance(label, (list, tuple, np.ndarray)):
                label = list(reversed(label))
                # number of sections larger than what we have so far:
                n = max(0, len(label) - 1 - self.nsecs)
                # find matching sections:
                found = False
                for s in range(1, len(label)):
                    for c in range(len(self.header) - 1, -1, -1):
                        if len(self.header[c]) > s - n:
                            if s - n >= 0 and \
                               self.header[c][s - n] == label[s]:
                                # remove matching sections:
                                label = label[:s]
                                found = True
                            break
                    if found:
                        break
                # add label and unique sections:
                self.header.append(label)
                label = label[0]
                if n > 0:
                    # lift previous header label and sections:
                    for c in range(len(self.header) - 1):
                        self.header[c] = ['-']*n + self.header[c]
            else:
                self.header.append([label])
            self.units.append(unit or '')
            self.formats.append(formats or '%g')
            self.descriptions.append(description or '')
            self.hidden.append(False)
            self.data.append([])
            self.nsecs = max(map(len, self.header)) - 1
        else:
            if isinstance(label, (list, tuple, np.ndarray)):
                self.header[self.addcol] = list(reversed(label)) + self.header[self.addcol]
                label = label[-1]
            else:
                self.header[self.addcol] = [label] + self.header[self.addcol]
            self.units[self.addcol] = unit or ''
            self.formats[self.addcol] = formats or '%g'
            self.descriptions[self.addcol] = description or ''
            if self.nsecs < len(self.header[self.addcol]) - 1:
                self.nsecs = len(self.header[self.addcol]) - 1
        if not key:
            key = label
        if value is not None:
            if isinstance(value, (list, tuple, np.ndarray)):
                if key and len(value) > 0 and isinstance(value[0], dict):
                    value = [d[key] if key in d else float('nan') for d in value]
                self.data[-1].extend(value)
            else:
                self.data[-1].append(value)
        if fac:
            for k in range(len(self.data[-1])):
                self.data[-1][k] *= fac
        self.addcol = len(self.data)
        self.__recompute_shape()
        return self
        
    def insert(self, column, label, unit=None, formats=None, description=None,
               value=None, fac=None, key=None):
        """Insert a table column at a given position.

        .. WARNING::
           If no `value` is given, the inserted column is an empty list.

        Parameters
        ----------
        columns int or str
            Column before which to insert the new column.
            Column can be specified by index or name,
            see `index()` for details.
        label: str or list of str
            Optional section titles and the name of the column.
        unit: str or None
            The unit of the column contents.
        formats: str or None
            The C-style format string used for printing out the column content, e.g.
            '%g', '%.2f', '%s', etc.
            If None, the format is set to '%g'.
        description: str or None
            The description of the column contents.
        value: None, float, int, str, etc. or list thereof, or list of dict
            If not None, data for the column.
            If list of dictionaries, extract from each dictionary in the list
            the value specified by `key`. If `key` is `None` use `label` as
            the key.
        fac: float
            If not None, multiply the data values by this number.
        key: None or key of a dictionary
            If not None and `value` is a list of dictionaries,
            extract from each dictionary in the list the value specified
            by `key` and assign the resulting list as data to the column.

        Returns
        -------
        index: int
            The index of the inserted column.
            
        Raises
        ------
        self: TableData
            This TableData
        """
        col = self.index(column)
        if col is None:
            raise IndexError(f'Cannot insert before non-existing column "{column}"')
        if isinstance(label, (list, tuple, np.ndarray)):
            self.header.insert(col, list(reversed(label)))
        else:
            self.header.insert(col, [label])
        self.units.insert(col, unit or '')
        self.formats.insert(col, formats or '%g')
        self.descriptions.insert(col, description or '')
        self.hidden.insert(col, False)
        self.data.insert(col, [])
        if self.nsecs < len(self.header[col]) - 1:
            self.nsecs = len(self.header[col]) - 1
        if not key:
            key = label
        if value is not None:
            if isinstance(value, (list, tuple, np.ndarray)):
                if key and len(value) > 0 and isinstance(value[0], dict):
                    value = [d[key] if key in d else float('nan') for d in value]
                self.data[col].extend(value)
            else:
                self.data[col].append(value)
        if fac:
            for k in range(len(self.data[col])):
                self.data[col][k] *= fac
        self.addcol = len(self.data)
        self.__recompute_shape()
        return self

    def remove(self, columns):
        """Remove columns from the table.

        Parameters
        -----------
        columns: int or str or list of int or str
            Columns can be specified by index or name,
            see `index()` for details.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        # fix columns:
        if not isinstance(columns, (list, tuple, np.ndarray)):
            columns = [ columns ]
        if not columns:
            return
        # remove:
        for col in columns:
            c = self.index(col)
            if c is None:
                if isinstance(col, (np.integer, int)):
                    col = '%d' % col
                raise IndexError('Cannot remove non-existing column ' + col)
                continue
            if c+1 < len(self.header):
                self.header[c+1].extend(self.header[c][len(self.header[c+1]):])
            del self.header[c]
            del self.units[c]
            del self.formats[c]
            del self.descriptions[c]
            del self.hidden[c]
            del self.data[c]
        if self.setcol >= len(self.data):
            self.setcol = 0
        self.__recompute_shape()

    def section(self, column, level):
        """The section name of a specified column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        level: int
            The level of the section to be returned. The column label itself is level=0.

        Returns
        -------
        name: str
            The name of the section at the specified level containing
            the column.
        index: int
            The column index that contains this section
            (equal or smaller thant `column`).

        Raises
        ------
        IndexError:
            If `level` exceeds the maximum possible level.
        """
        if level < 0 or level > self.nsecs:
            raise IndexError('Invalid section level')
        column = self.index(column)
        while len(self.header[column]) <= level:
            column -= 1
        return self.header[column][level], column
    
    def set_section(self, column, label, level):
        """Set a section name.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        label: str
            The new name to be used for the section.
        level: int
            The level of the section to be set. The column label itself is level=0.
        """
        column = self.index(column)
        self.header[column][level] = label
        return column

    def append_section(self, label):
        """Add sections to the table header.

        Each column of the table has a header label. Columns can be
        grouped into sections. Sections can be nested arbitrarily.

        Parameters
        ----------
        label: stri or list of str
            The name(s) of the section(s).

        Returns
        -------
        index: int
            The column index where the section was appended.
        """
        if self.addcol >= len(self.data):
            if isinstance(label, (list, tuple, np.ndarray)):
                self.header.append(list(reversed(label)))
            else:
                self.header.append([label])
            self.units.append('')
            self.formats.append('')
            self.descriptions.append('')
            self.hidden.append(False)
            self.data.append([])
        else:
            if isinstance(label, (list, tuple, np.ndarray)):
                self.header[self.addcol] = list(reversed(label)) + self.header[self.addcol]
            else:
                self.header[self.addcol] = [label] + self.header[self.addcol]
        if self.nsecs < len(self.header[self.addcol]):
            self.nsecs = len(self.header[self.addcol])
        self.addcol = len(self.data) - 1
        self.__recompute_shape()
        return self.addcol
        
    def insert_section(self, column, section):
        """Insert a section at a given position of the table header.

        Parameters
        ----------
        columns int or str
            Column before which to insert the new section.
            Column can be specified by index or name,
            see `index()` for details.
        section: str
            The name of the section.

        Returns
        -------
        index: int
            The index of the column where the section was inserted.
            
        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        col = self.index(column)
        if col is None:
            if isinstance(column, (np.integer, int)):
                column = '%d' % column
            raise IndexError('Cannot insert at non-existing column ' + column)
        self.header[col].append(section)
        if self.nsecs < len(self.header[col]) - 1:
            self.nsecs = len(self.header[col]) - 1
        return col

    def label(self, column):
        """The name of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        self: TableData
            This TableData
        """
        column = self.index(column)
        return self.header[column][0]

    def set_label(self, column, label):
        """Set the name of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        label: str
            The new name to be used for the column.

        Returns
        -------
        self: TableData
            This TableData
        """        
        column = self.index(column)
        self.header[column][0] = label
        return self

    def set_labels(self, labels):
        """Set the labels of some columns.

        Parameters
        ----------
        labels: TableData, dict, list of str, list of list of str, None
            The new labels to be used.
            If TableData, take the labels of the respective column indices.
            If dict, keys are column labels (see self.index() for more
            information on how to specify a column), and values are
            the new labels for the respective columns as str or list of str.
            If list of str or list of list of str,
            set labels of the first successive columns to the list elements.
            If `None`, do nothing.

        Returns
        -------
        self: TableData
            This TableData
        """
        if isinstance(labels, TableData):
            for c in range(min(self.columns(), labels.columns())):
                self.header[c] = labels.header[c]
        elif isinstance(labels, dict):
            for c in labels:
                i = self.index(c)
                if i is None:
                    continue
                l = labels[c]
                if isinstance(l, (list, tuple)):
                    self.header[i] = l
                else:
                    self.header[i] = [l]
        elif isinstance(labels, (list, tuple, np.ndarray)) and not \
             (isinstance(labels, np.ndarray) and len(labels.shape) == 0):
            for c, l in enumerate(labels):
                if isinstance(l, (list, tuple)):
                    self.labels[c] = l
                else:
                    self.labels[c] = [l]
        return self

    def unit(self, column):
        """The unit of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        unit: str
            The unit.
        """
        column = self.index(column)
        return self.units[column]

    def set_unit(self, column, unit):
        """Set the unit of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        unit: str
            The new unit to be used for the column.

        Returns
        -------
        self: TableData
            This TableData
        """
        column = self.index(column)
        self.units[column] = unit
        return self

    def set_units(self, units):
        """Set the units of some columns.

        Parameters
        ----------
        units: TableData, dict, list of str, str, None
            The new units to be used.
            If TableData, take the units of matching column labels.
            If dict, keys are column labels (see self.index() for more
            information on how to specify a column), and values are
            units for the respective columns as str.
            If list of str, set units of the first successive columns to
            the list elements.
            If `None`, do nothing.
            Otherwise, set units of all columns to `units`.

        Returns
        -------
        self: TableData
            This TableData
        """
        if isinstance(units, TableData):
            for c in units:
                i = self.index(c)
                if i is None:
                    continue
                self.units[i] = units.unit(c)
        elif isinstance(units, dict):
            for c in units:
                i = self.index(c)
                if i is None:
                    continue
                self.units[i] = units[c]
        elif isinstance(units, (list, tuple, np.ndarray)) and not \
             (isinstance(units, np.ndarray) and len(units.shape) == 0):
            for c, u in enumerate(units):
                self.units[c] = u
        elif units is not None:
            for c in range(len(self.units)):
                self.units[c] = units
        return self

    def format(self, column):
        """The format string of the column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        format: str
            The format string.
        """
        column = self.index(column)
        return self.formats[column]

    def set_format(self, column, format):
        """Set the format string of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        format: str
            The new format string to be used for the column.

        Returns
        -------
        self: TableData
            This TableData
        """
        column = self.index(column)
        self.formats[column] = format
        return self

    def set_formats(self, formats):
        """Set the format strings of all columns.

        Parameters
        ----------
        formats: TableData, dict, list of str, str, None
            The new format strings to be used.
            If TableData, take the format strings of matching column labels.
            If dict, keys are column labels (see self.index() for more
            information on how to specify a column), and values are
            format strings for the respective columns as str.
            If list of str, set format strings of the first successive
            columns to the list elements.
            If `None`, do nothing.
            Otherwise, set format strings of all columns to `formats`.

        Returns
        -------
        self: TableData
            This TableData
        """
        if isinstance(formats, TableData):
            for c in formats:
                i = self.index(c)
                if i is None:
                    continue
                self.formats[i] = formats.format(c)
        elif isinstance(formats, dict):
            for c in formats:
                i = self.index(c)
                if i is None:
                    continue
                self.formats[i] = formats[c] or '%g'
        elif isinstance(formats, (list, tuple, np.ndarray)) and not \
             (isinstance(formats, np.ndarray) and len(formats.shape) == 0):
            for c, f in enumerate(formats):
                self.formats[c] = f or '%g'
        elif formats is not None:
            for c in range(len(self.formats)):
                self.formats[c] = formats or '%g'
        return self

    def description(self, column):
        """The description of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        description: str
            The description.
        """
        column = self.index(column)
        return self.descriptions[column]

    def set_description(self, column, description):
        """Set the description of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        description: str
            The new description to be used for the column.

        Returns
        -------
        self: TableData
            This TableData
        """
        column = self.index(column)
        self.descriptions[column] = description
        return self

    def set_descriptions(self, descriptions):
        """Set the descriptions of some columns.

        Parameters
        ----------
        descriptions: TableData, dict, list of str, str, None
            The new descriptions to be used.
            If TableData, take the descriptions of matching column labels.
            If dict, keys are column labels (see self.index() for more
            information on how to specify a column), and values are
            descriptions for the respective columns as str.
            If list of str, set descriptions of the first successive columns to
            the list elements.
            If `None`, do nothing.

        Returns
        -------
        self: TableData
            This TableData
        """
        if isinstance(descriptions, TableData):
            for c in descriptions:
                i = self.index(c)
                if i is None:
                    continue
                self.descriptions[i] = descriptions.description(c)
        elif isinstance(descriptions, dict):
            for c in descriptions:
                i = self.index(c)
                if i is None:
                    continue
                self.descriptions[i] = descriptions[c]
        elif isinstance(descriptions, (list, tuple, np.ndarray)) and not \
             (isinstance(descriptions, np.ndarray) and len(descriptions.shape) == 0):
            for c, d in enumerate(descriptions):
                self.descriptions[c] = d
        return self

    def table_header(self):
        """The header of the table without content.

        Returns
        -------
        data: TableData
            A TableData object with the same header but empty data.
        """
        data = TableData()
        sec_indices = [-1] * self.nsecs
        for c in range(self.columns()):
            data.append(*self.column_head(c))
            for l in range(self.nsecs):
                s, i = self.section(c, l+1)
                if i != sec_indices[l]:
                    data.header[-1].append(s)
                    sec_indices[l] = i
        data.nsecs = self.nsecs
        return data

    def column_head(self, column, secs=False):
        """The name, unit, format, and description of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        secs: bool
            If True, return all section names in addition to the column label.

        Returns
        -------
        name: str or list of str
            The column label or the label with all its sections.
        unit: str
            The unit.
        format: str
            The format string.
        description: str
            The description of the data column.
        """
        column = self.index(column)
        if secs:
            header = self.header[column]
            c = column - 1
            while len(header) < self.nsecs + 1 and c >= 0:
                if len(self.header[c]) > len(header):
                    header.extend(self.header[c][len(header):])
                c -= 1
            return list(reversed(header)), self.units[column], self.formats[column], self.descriptions[column]
        else:
            return self.header[column][0], self.units[column], self.formats[column], self.descriptions[column]

    def column_spec(self, column):
        """Full specification of a column with all its section names.

        Parameters
        ----------
        column: int or str
            Specifies the column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        s: str
            Full specification of the column by all its section names and its header label.
        """
        c = self.index(column)
        fh = [self.header[c][0]]
        for l in range(self.nsecs):
            fh.append(self.section(c, l+1)[0])
        return '>'.join(reversed(fh))
    
    def find_col(self, column):
        """Find the start and end index of a column specification.
        
        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        c0: int or None
            A valid column index or None that is specified by `column`.
        c1: int or None
            A valid column index or None of the column following the range specified
            by `column`.
        """

        def find_column_indices(ss, si, minns, maxns, c0, strict=True):
            if si >= len(ss):
                return None, None, None, None
            ns0 = 0
            for ns in range(minns, maxns+1):
                nsec = maxns - ns
                if ss[si] == '':
                    si += 1
                    continue
                for c in range(c0, len(self.header)):
                    if nsec < len(self.header[c]) and \
                        ((strict and self.header[c][nsec] == ss[si]) or
                         (not strict and ss[si] in self.header[c][nsec])):
                        ns0 = ns
                        c0 = c
                        si += 1
                        if si >= len(ss):
                            c1 = len(self.header)
                            for c in range(c0+1, len(self.header)):
                                if nsec < len(self.header[c]):
                                    c1 = c
                                    break
                            return c0, c1, ns0, None
                        elif nsec > 0:
                            break
            return None, c0, ns0, si

        if column is None:
            return None, None
        if not isinstance(column, (np.integer, int)) and column.isdigit():
            column = int(column)
        if isinstance(column, (np.integer, int)):
            if column >= 0 and column < len(self.header):
                return column, column + 1
            else:
                return None, None
        # find column by header:
        ss = column.rstrip('>').split('>')
        maxns = self.nsecs
        si0 = 0
        while si0 < len(ss) and ss[si0] == '':
            maxns -= 1
            si0 += 1
        if maxns < 0:
            maxns = 0
        c0, c1, ns, si = find_column_indices(ss, si0, 0, maxns, 0, True)
        if c0 is None and c1 is not None:
            c0, c1, ns, si = find_column_indices(ss, si, ns, maxns, c1, False)
        return c0, c1

    def index(self, column):
        """The column index of a column specifier.
        
        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            - None: no column is specified
            - int: the index of the column (first column is zero), e.g. `index(2)`.
            - a string representing an integer is converted into the column index,
              e.g. `index('2')`
            - a string specifying a column by its header.
              Header names of descending hierarchy are separated by '>'.

        Returns
        -------
        index: int or None
            A valid column index or None.
        """
        c0, c1 = self.find_col(column)
        return c0

    def __contains__(self, column):
        """Check for existence of a column.

        Parameters
        ----------
        column: None, int, or str
            The column to be checked.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        contains: bool
            True if `column` specifies an existing column key.
        """
        return self.index(column) is not None

    def keys(self):
        """List of unique column keys for all available columns.

        Returns
        -------
        keys: list of str
            List of unique column specifications.
        """
        return [self.column_spec(c) for c in range(self.columns())]

    def values(self):
        """List of column data corresponding to keys(). Same as `self.data`.

        Returns
        -------
        data: list of list of values
            The data of the table. First index is columns!
        """
        return self.data

    def items(self):
        """Generator over column names and corresponding data.

        Yields
        ------
        item: tuple
            Unique column specifications and the corresponding data.
        """
        for c in range(self.columns()):
            yield self.column_spec(c), self.data[c]
        
    def __len__(self):
        """The number of rows.
        
        Returns
        -------
        rows: int
            The number of rows contained in the table.
        """
        return self.rows()

    def __iter__(self):
        """Initialize iteration over data columns.
        """
        self.iter_counter = -1
        return self

    def __next__(self):
        """Next unique column key.

        Returns
        -------
        s: str
            Full specification of the column by all its section names and its header label.
        """
        self.iter_counter += 1
        if self.iter_counter >= self.columns():
            raise StopIteration
        else:
            return self.column_spec(self.iter_counter)

    def rows(self):
        """The number of rows.
        
        Returns
        -------
        rows: int
            The number of rows contained in the table.
        """
        return max(map(len, self.data)) if self.data else 0
    
    def columns(self):
        """The number of columns.
        
        Returns
        -------
        columns: int
            The number of columns contained in the table.
        """
        return len(self.header)

    def row(self, index):
        """A single row of the table as TableData.

        Parameters
        ----------
        index: int
            The index of the row to be returned.

        Returns
        -------
        data: TableData
            A TableData object with a single row.
        """
        data = TableData()
        sec_indices = [-1] * self.nsecs
        for c in range(self.columns()):
            data.append(*self.column_head(c))
            for l in range(self.nsecs):
                s, i = self.section(c, l+1)
                if i != sec_indices[l]:
                    data.header[-1].append(s)
                    sec_indices[l] = i
            data.data[-1] = [self.data[c][index]]
        data.nsecs = self.nsecs
        return data

    def row_list(self, index):
        """A single row of the table as list.

        Parameters
        ----------
        index: int
            The index of the row to be returned.

        Returns
        -------
        data: list
            A list with data values of each column of row `index`.
        """
        data = []
        for c in range(self.columns()):
            data.append(self.data[c][index])
        return data

    def row_data(self):
        """A generator for iterating over rows of the table.

        Yields
        ------
        data: list
            A list with data values of each column.
        """
        for r in range(self.rows()):
            yield self.row_list(r)

    def row_dict(self, index):
        """A single row of the table as dictionary.

        Parameters
        ----------
        index: int
            The index of the row to be returned.

        Returns
        -------
        data: dict
            A dictionary with column header as key and corresponding data value of row `index`
            as value.
        """
        data = {}
        for c in range(self.columns()):
            data[self.column_spec(c)] = self.data[c][index]
        return data

    def column(self, col):
        """A single column of the table.

        Parameters
        ----------
        col: None, int, or str
            The column to be returned.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        table: TableData
            A TableData object with a single column.
        """
        data = TableData()
        c = self.index(col)
        data.append(*self.column_head(c))
        data.data = [self.data[c]]
        data.nsecs = 0
        return data

    def __call__(self, column):
        """A single column of the table as a ndarray.

        Parameters
        ----------
        column: None, int, or str
            The column to be returned.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        data: 1-D ndarray
            Content of the specified column as a ndarray.
        """
        c = self.index(column)
        return np.asarray(self.data[c])

    def __setupkey(self, key):
        """Helper function that turns a key into row and column indices.

        Returns
        -------
        rows: list of int, slice, None
            Indices of selected rows.
        cols: list of int
            Indices of selected columns.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        if type(key) is not tuple:
            if isinstance(key, str):
                cols = key
                rows = slice(0, self.rows(), 1)
            elif isinstance(key, slice) and isinstance(key.start, str) and isinstance(key.stop, str):
                cols = key
                rows = slice(0, self.rows(), 1)
            else:
                rows = key
                cols = range(self.columns())
        else:
            rows = key[0]
            cols = key[1]
        if isinstance(cols, slice):
            start = cols.start
            if start is not None:
                start = self.index(start)
                if start is None:
                    raise IndexError('"%s" is not a valid column index' % cols.start)
            stop = cols.stop
            if stop is not None:
                stop_str = isinstance(stop, str)
                stop = self.index(stop)
                if stop is None:
                    raise IndexError('"%s" is not a valid column index' % cols.stop)
                if stop_str:
                    stop += 1
            cols = slice(start, stop, cols.step)
            cols = range(self.columns())[cols]
        else:
            if not isinstance(cols, (list, tuple, np.ndarray, range)):
                cols = [cols]
            c = [self.index(inx) for inx in cols]
            if None in c:
                raise IndexError('"%s" is not a valid column index' % cols[c.index(None)])
            cols = c
        if isinstance(rows, np.ndarray) and rows.dtype == np.dtype(bool):
            rows = np.where(rows)[0]
            if len(rows) == 0:
                rows = None
        return rows, cols

    def __getitem__(self, key):
        """Data elements specified by slice.

        Parameters
        -----------
        key:
            First key specifies row, (optional) second key the column.
            Columns can be specified by index or name,
            see `index()` for details.
            A single key of strings selects columns by their names: `td[:, 'col'] == td['col']`
            If a stop column is specified by name,
            it is inclusively!

        Returns
        -------
        data:
            - A single data value if a single row and a single column is specified.
            - A ndarray of data elements if a single column is specified.
            - A TableData object for multiple columns.
            - None if no row is selected (e.g. by a logical index that nowhere is True)

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        rows, cols = self.__setupkey(key)
        if len(cols) == 1:
            if cols[0] >= self.columns():
                return None
            if rows is None:
                return None
            elif isinstance(rows, slice):
                return np.asarray(self.data[cols[0]][rows])
            elif isinstance(rows, (list, tuple, np.ndarray)):
                return np.asarray([self.data[cols[0]][r] for r in rows if r < len(self.data[cols[0]])])
            elif rows < len(self.data[cols[0]]):
                return self.data[cols[0]][rows]
            else:
                return None
        else:
            data = TableData()
            sec_indices = [-1] * self.nsecs
            for c in cols:
                data.append(*self.column_head(c, secs=True))
                if rows is None:
                    continue
                if isinstance(rows, (list, tuple, np.ndarray)):
                    for r in rows:
                        data.data[-1].append(self.data[c][r])
                else:
                    try:
                        if isinstance(self.data[c][rows],
                                      (list, tuple, np.ndarray)):
                            data.data[-1].extend(self.data[c][rows])
                        else:
                            data.data[-1].append(self.data[c][rows])
                    except IndexError:
                        data.data[-1].append(np.nan)
            data.nsecs = self.nsecs
            return data

    def __setitem__(self, key, value):
        """Assign values to data elements specified by slice.

        Parameters
        -----------
        key:
            First key specifies row, (optional) second one the column.
            Columns can be specified by index or name,
            see `index()` for details.
            A single key of strings selects columns by their names: `td[:, 'col'] == td['col']`
            If a stop column is specified by name,
            it is inclusively!
        value: TableData, list, ndarray, float, ...
            Value(s) used to assing to the table elements as specified by `key`.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        rows, cols = self.__setupkey(key)
        if rows is None:
            return
        if isinstance(value, TableData):
            if isinstance(self.data[cols[0]][rows], (list, tuple, np.ndarray)):
                for k, c in enumerate(cols):
                    self.data[c][rows] = value.data[k]
            else:
                for k, c in enumerate(cols):
                    self.data[c][rows] = value.data[k][0]
        else:
            if len(cols) == 1:
                if isinstance(rows, (list, tuple, np.ndarray)):
                    if len(rows) == 1:
                        self.data[cols[0]][rows[0]] = value
                    elif isinstance(value, (list, tuple, np.ndarray)):
                        for k, r in enumerate(rows):
                            self.data[cols[0]][r] = value[k]
                    else:
                        for r in rows:
                            self.data[cols[0]][r] = value
                elif isinstance(value, (list, tuple, np.ndarray)):
                    self.data[cols[0]][rows] = value
                elif isinstance(rows, (np.integer, int)):
                    self.data[cols[0]][rows] = value
                else:
                    n = len(self.data[cols[0]][rows])
                    if n > 1:
                        self.data[cols[0]][rows] = [value]*n
                    else:
                        self.data[cols[0]][rows] = value
            else:
                if isinstance(self.data[0][rows], (list, tuple, np.ndarray)):
                    for k, c in enumerate(cols):
                        self.data[c][rows] = value[:,k]
                elif isinstance(value, (list, tuple, np.ndarray)):
                    for k, c in enumerate(cols):
                        self.data[c][rows] = value[k]
                else:
                    for k, c in enumerate(cols):
                        self.data[c][rows] = value

    def __delitem__(self, key):
        """Delete data elements or whole columns or rows.

        Parameters
        -----------
        key:
            First key specifies row, (optional) second one the column.
            Columns can be specified by index or name,
            see `index()` for details.
            A single key of strings selects columns by their names: `td[:, 'col'] == td['col']`
            If a stop column is specified by name,
            it is inclusively!
            If all rows are selected, then the specified columns are removed from the table.
            Otherwise only data values are removed.
            If all columns are selected than entire rows of data values are removed.
            Otherwise only data values in the specified rows are removed.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        rows, cols = self.__setupkey(key)
        if rows is None:
            return
        row_indices = np.arange(self.rows(), dtype=int)[rows]
        if isinstance(row_indices, np.ndarray):
            if len(row_indices) == self.rows():
                # delete whole columns:
                self.remove(cols)
            elif len(row_indices) > 0:
                for r in reversed(sorted(row_indices)):
                    for c in cols:
                        if r < len(self.data[c]):
                            del self.data[c][r]
            self.__recompute_shape()
        else:
            for c in cols:
                del self.data[c][row_indices]
            self.__recompute_shape()

    def array(self, row=None):
        """The table data as a ndarray.

        Parameters
        ----------
        row: int or None
            If specified, a 1D ndarray of that row will be returned.

        Returns
        -------
        data: 2D or 1D ndarray
            If no row is specified, the data content of the entire table
            as a 2D ndarray (rows first).
            If a row is specified, a 1D ndarray of that row.
        """
        if row is None:
            return np.array(self.data).T
        else:
            return np.array([d[row] for d in self.data])

    def data_frame(self):
        """The table data as a pandas DataFrame.

        Returns
        -------
        data: pandas.DataFrame
            A pandas DataFrame of the whole table.
        """
        return pd.DataFrame(self.dict())

    def dicts(self, raw_values=True, missing=default_missing_str):
        """The table as a list of dictionaries.

        Parameters
        ----------
        raw_values: bool
            If True, use raw table values as values,
            else format the values and add unit string.
        missing: str
            String indicating non-existing data elements.

        Returns
        -------
        table: list of dict
            For each row of the table a dictionary with header as key.
        """
        table = []
        for row in range(self.rows()):
            data = {}
            for col in range(len(self.header)):
                if raw_values:
                    v = self.data[col][row];
                else:
                    if isinstance(self.data[col][row], (float, np.floating)) and m.isnan(self.data[col][row]):
                        v = missing
                    else:
                        u = ''
                        if not self.units[col] in '1-' and self.units[col] != 'a.u.':
                            u = self.units[col]
                        v = (self.formats[col] % self.data[col][row]) + u
                data[self.header[col][0]] = v
            table.append(data)
        return table

    def dict(self):
        """The table as a dictionary.

        Returns
        -------
        table: dict
            A dictionary with keys being the column headers and
            values the list of data elements of the corresponding column.
        """
        table = {k: v for k, v in self.items()}
        return table

    def _add_table_data(self, data, add_all):
        """Add data of a TableData.

        Parameters
        ----------
        data: TableData
            Table with the data to be added.
        add_all: bool
            If False, then only data of columns that already exist in
            the table are added to the table. If the table is empty or
            `add_all` is set to `True` then all data is added and if
            necessary new columns are appended to the table.
        """
        empty = False
        if self.shape[1] == 0:
            add_all = True
            empty = True
        maxr = self.rows()
        for k in data.keys():
            col = self.index(k)
            if empty or col is None:
                if not add_all:
                    continue
                self.append(*data.column_head(k, secs=True),
                            value=[np.nan]*maxr)
                col = len(self.data) - 1
            c = data.index(k)
            self.data[col].extend(data.data[c])
        self.__recompute_shape()

    def _add_dict(self, data, add_all):
        """Add data of a TableData.

        Parameters
        ----------
        data: dict
            Keys are column labels and values are single values or
            lists of values to be added to the corresponding table columns.
        add_all: bool
            If False, then only data of columns that already exist in
            the table are added to the table. If the table is empty or
            `add_all` is set to `True` then all data is added and if
            necessary new columns are appended to the table.

        """
        empty = False
        if self.shape[1] == 0:
            add_all = True
            empty = True
        maxr = self.rows()
        for key in data:
            new_key = key
            new_unit = ''
            if '/' in key:
                p = key.split('/')
                new_key = p[0].strip()
                new_unit = '/'.join(p[1:])
            col = self.index(new_key)
            if empty or col is None:
                if not add_all:
                    continue
                self.append(new_key, new_unit,
                            value=[np.nan]*maxr)
                col = len(self.data) - 1
            if isinstance(data[key], (list, tuple, np.ndarray)):
                self.data[col].extend(data[key])
            else:
                self.data[col].append(data[key])
        self.__recompute_shape()

    def add(self, data, column=None, add_all=False):
        """Add data elements to successive columns.

        The current column is set behid the added columns.

        Parameters
        ----------
        data: float, int, str, etc. or list thereof or list of list thereof or dict or list of dict or TableData
            Data values to be appended to successive columns:
            - A single value is simply appended to the specified
              column of the table.
            - A 1D-list of values is appended to successive columns of the table
              starting with the specified column.
            - The columns (second index) of a 2D-list of values are
              appended to successive columns of the table starting
              with the specified column.
            - Values of a dictionary or of a list of dictionaries are
              added to the columns specified by the keys. Dictionary
              values can also be lists of values. Their values are
              added to successive rows of the columns specified by the
              dictionary keys. Does not affect the current column.
            - All elements of a TableData are added to matching columns.
              Does not affect the current column.
        column: None, int, or str
            The first column to which the data should be appended,
            if `data` does not specify columns.
            If None, append to the current column.
            See self.index() for more information on how to specify a column.
        add_all: bool
            If the data are given as dictionaries or TableData, then
            only data of columns that already exist in the table are
            added to the table. If the table is empty or `add_all` is
            set to `True` then all data is added and if necessary new
            columns are appended to the table.
        """
        if self.shape[1] == 0:
            add_all = True
        column = self.index(column)
        if column is None:
            column = self.setcol
        if isinstance(data, TableData):
            self._add_table_data(data, add_all)
        elif isinstance(data, (list, tuple, np.ndarray)) and not \
             (isinstance(data, np.ndarray) and len(data.shape) == 0):
            if len(data) > 0 and \
               isinstance(data[0], (list, tuple, np.ndarray)) and not \
               (isinstance(data[0], np.ndarray) and len(data[0].shape) == 0):
                # 2D list, rows first:
                for row in data:
                    for i, val in enumerate(row):
                        self.data[column + i].append(val)
                self.setcol = column + len(data[0])
            elif len(data) > 0 and isinstance(data[0], dict):
                # list of dictionaries:
                for d in data:
                    self._add_dict(d, add_all)
            else:
                # 1D list:
                for val in data:
                    self.data[column].append(val)
                    column += 1
                self.setcol = column
        elif isinstance(data, dict):
            # dictionary with values:
            self._add_dict(data, add_all)
        else:
            # single value:
            self.data[column].append(data)
            self.setcol = column + 1
        if self.setcol >= len(self.data):
            self.setcol = 0
        self.__recompute_shape()

    def append_data_column(self, data, column=None):
        """Append data elements to a column.

        The current column is incremented by one.

        Parameters
        ----------
        data: float, int, str, etc. or list thereof
            Data values to be appended to a column.
        column: None, int, or str
            The column to which the data should be appended.
            If None, append to the current column.
            See self.index() for more information on how to specify a column.
        """
        column = self.index(column)
        if column is None:
            column = self.setcol
        if isinstance(data, (list, tuple, np.ndarray)):
            self.data[column].extend(data)
            column += 1
            self.setcol = column
        else:
            self.data[column].append(data)
            self.setcol = column+1
        if self.setcol >= len(self.data):
            self.setcol = 0
        self.__recompute_shape()

    def set_column(self, column):
        """Set the column where to add data.

        Parameters
        ----------
        column: int or str
            The column to which data elements should be appended.
            See self.index() for more information on how to specify a column.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        col = self.index(column)
        if col is None:
            if isinstance(column, (np.integer, int)):
                column = '%d' % column
            raise IndexError('column ' + column + ' not found or invalid')
        self.setcol = col
        return col

    def fill_data(self):
        """Fill up all columns with missing data to have the same number of
        data elements.
        """
        # maximum rows:
        maxr = self.rows()
        # fill up:
        for c in range(len(self.data)):
            while len(self.data[c]) < maxr:
                self.data[c].append(np.nan)
        self.setcol = 0
        self.__recompute_shape()

    def clear_data(self):
        """Clear content of the table but keep header.
        """
        for c in range(len(self.data)):
            self.data[c] = []
        self.setcol = 0
        self.__recompute_shape()

    def clear(self):
        """Clear the table of any content and header information.
        """
        self.ndim = 2
        self.size = 0
        self.shape = (0, 0)
        self.nsecs = 0
        self.header = []
        self.units = []
        self.formats = []
        self.descriptions = []
        self.data = []
        self.hidden = []
        self.setcol = 0
        self.addcol = 0
                
    def sort(self, columns, reverse=False):
        """Sort the table rows in place.

        Parameters
        ----------
        columns: int or str or list of int or str
            A column specifier or a list of column specifiers of the columns
            to be sorted.
        reverse: boolean
            If `True` sort in descending order.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        # fix columns:
        if not isinstance(columns, (list, tuple, np.ndarray)):
            columns = [ columns ]
        if not columns:
            return
        cols = []
        for col in columns:
            c = self.index(col)
            if c is None:
                if isinstance(col, (np.integer, int)):
                    col = '%d' % col
                raise IndexError('sort column ' + col + ' not found')
                continue
            cols.append(c)
        # get sorted row indices:
        row_inx = range(self.rows())
        row_inx = sorted(row_inx, key=lambda x : [float('-inf') if self.data[c][x] is np.nan \
                         or self.data[c][x] != self.data[c][x] \
                         else self.data[c][x] for c in cols], reverse=reverse)
        # sort table according to indices:
        for c in range(self.columns()):
            self.data[c] = [self.data[c][r] for r in row_inx]

    def key_value(self, row, col, missing=default_missing_str):
        """A data element returned as a key-value pair.

        Parameters
        ----------
        row: int
            Specifies the row from which the data element should be retrieved.
        col: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        missing: str
            String indicating non-existing data elements.

        Returns
        -------
        key: str
            Header label of the column
        value: str
            A textual representation of the data element according to the format
            of the column, followed by the unit of the column.
        """
        col = self.index(col)
        if col is None:
            return ''
        if isinstance(self.data[col][row], (float, np.floating)) and m.isnan(self.data[col][row]):
            v = missing
        else:
            u = ''
            if not self.units[col] in '1-' and self.units[col] != 'a.u.':
                u = self.units[col]
            v = (self.formats[col] % self.data[col][row]) + u
        return self.header[col][0], v

    def _aggregate(self, funcs, columns=None, label=None,
                   numbers_only=False, remove_nans=False, single_row=False,
                   keep_columns=None):
        """Apply functions to columns.

        Parameter
        ---------
        funcs: function, list of function, dict
            Functions that are applied to columns of the table.
            - a single function that is applied to the `columns`.
              The results are named according to the function's `__name__`.
            - a list or tuple of functions.
              The results are named according to the functions' `__name__`.
            - a dictionary. The results are named after the provided keys,
              the functions are given by the values.
              If the function returns more than one value, then the
              corresponding key in the dictionary needs to be a tuple
              (not a list!) of names for each of the returned values.
            Functions in lists or dictionaries can be just a plain
            function, like `max` or `np.mean`. In case a function
            needs further arguments, then you need to supply a tuple
            with the first elements being the function, the second
            element being another tuple holding positional arguments,
            and an optional third argument holding a dictionary for
            key-word arguments.
        columns: None, int or str or list of int or str
            Columns of the table on which functions are applied.
            If None apply functions on all columns.
        label: str or list of str
            Column label and optional section names of the first
            column with the function labels (if `single_row` is `False`).
        numbers_only: bool
            If True, skip columns that do not contain numbers.
        remove_nans: bool
            If True, remove nans before passing column values to function.
        single_row: bool
            If False, add for each function a row to the table.
            If True, add function values in a single row.
        keep_columns: None, int or str or list of int or str
            Columns of the table from which to simply keep the first value.
            Only if single_row is True. Usefull for grouped tables.
            Order of columns and keep_columns are kept from the original table.

        Returns
        -------
        dest: TableData
            A new table with the column headers specified by `columns`.
            A first column is inserted with the function labels.
            The functions are applied to all columns specified by `columns`
            and their return values are written into the new table.

        """
        # standardize functions dictionary:
        if not isinstance(funcs, (list, tuple, dict)):
            funcs = [funcs]
        if isinstance(funcs, (list, tuple)):
            fs = {}
            for f in funcs:
                fs[f.__name__] = f
            funcs = fs
        fs = {}
        for k in funcs:
            kk = k
            if not isinstance(k, tuple):
                kk = (k,)
            v = funcs[k]
            if not isinstance(v, tuple):
                v = (funcs[k], (), {})
            elif len(v) < 3:
                v = (v[0], v[1], {})
            fs[kk] = v
        funcs = fs
        # standardize columns:
        if columns is None:
            columns = list(range(self.shape[1]))
        if not isinstance(columns, (list, tuple, np.ndarray)):
            columns = [columns]
        if numbers_only:
            cols = []
            for c in columns:
                c = self.index(c)
                if len(self.data[c]) > 0 and \
                   isinstance(self.data[c][0], (float, int, np.floating, np.integer)):
                    cols.append(c)
            columns = cols
        if label is None:
            label = 'property'
        dest = TableData()
        if single_row:
            if keep_columns is None:
                keep_columns = []
            elif not isinstance(keep_columns, (list, tuple)):
                keep_columns = [keep_columns]
            keep_columns = [self.index(c) for c in keep_columns]
            columns = [self.index(c) for c in columns]
            columns = [c for c in columns if not c in keep_columns]
            keep = np.zeros(len(keep_columns) + len(columns), dtype=bool)
            keep[:len(keep_columns)] = True
            columns = keep_columns + columns
            idx = np.argsort(columns)
            for i in idx:
                c = columns[i]
                if keep[i]:
                    name, unit, format, descr = self.column_head(c, secs=True)
                    dest.append(name + ['-'], unit, format, descr,
                                value=self.data[c][0])
                else:
                    name, unit, format, descr = self.column_head(c, secs=True)
                    values = self[:, c]
                    if remove_nans:
                        values = values[np.isfinite(values)]
                    for k in funcs:
                        v = funcs[k][0](values, *funcs[k][1], **funcs[k][2])
                        if len(k) == 1:
                            dest.append(name + [k[0]], unit, format, descr,
                                        value=v)
                        else:
                            for j in range(len(k)):
                                dest.append(name + [k[j]], unit, format, descr,
                                            value=v[j])
            dest.fill_data()
        else:
            dest.append(label, '', '%-s')
            for c in columns:
                dest.append(*self.column_head(c, secs=True))
            for k in funcs:
                for j in range(len(k)):
                    dest.add(k[j], 0)
                for i, c in enumerate(columns):
                    values = self[:, c]
                    if remove_nans:
                        values = values[np.isfinite(values)]
                    v = funcs[k][0](values, *funcs[k][1], **funcs[k][2])
                    if len(k) == 1:
                        dest.add(v, i + 1)
                    else:
                        for j in range(len(k)):
                            dest.add(v[j], i + 1)
                dest.fill_data()
        return dest

    def aggregate(self, funcs, columns=None, label=None,
                  numbers_only=False, remove_nans=False,
                  single_row=False, by=None):
        """Apply functions to columns.

        Parameter
        ---------
        funcs: function, list of function, dict
            Functions that are applied to columns of the table.
            - a single function that is applied to the `columns`.
              The results are named according to the function's `__name__`.
            - a list or tuple of functions.
              The results are named according to the functions' `__name__`.
            - a dictionary. The results are named after the provided keys,
              the functions are given by the values.
              If the function returns more than one value, then the
              corresponding key in the dictionary needs to be a tuple
              (not a list!) of names for each of the returned values.
            Functions in lists or dictionaries can be just a plain
            function, like `max` or `np.mean`. In case a function
            needs further arguments, then you need to supply a tuple
            with the first elements being the function, the second
            element being another tuple holding positional arguments,
            and an optional third argument holding a dictionary for
            key-word arguments.
        columns: None, int or str or list of int or str
            Columns of the table on which functions are applied.
            If None apply functions on all columns.
        label: str or list of str
            Column label and optional section names of the first
            column with the function labels (if `single_row` is `False`).
        numbers_only: bool
            If True, skip columns that do not contain numbers.
        remove_nans: bool
            If True, remove nans before passing column values to function.
        single_row: bool
            If False, add for each function a row to the table.
            If True, add function values in a single row.
        by: None, int or str or list of int or str
            Group the table by the specified columns and apply the functions
            to each resulting sub-table separately.

        Returns
        -------
        dest: TableData
            A new table with the column headers specified by `columns`.
            A first column is inserted with the function labels
            (if not `single_row`).
            The functions are applied to all columns specified by `columns`
            and their return values are written into the new table.
        """
        if by is not None:
            # aggregate on grouped table:
            if not isinstance(by, (list, tuple)):
                by = [by]
            if len(by) > 0:
                gd = TableData()
                for name, values in self.groupby(*by):
                    ad = values._aggregate(funcs, columns, label,
                                           numbers_only=numbers_only,
                                           remove_nans=remove_nans,
                                           single_row=True, keep_columns=by)
                    gd.add(ad)
                return gd
        # aggregate on whole table:
        return self._aggregate(funcs, columns, label,
                               numbers_only=numbers_only,
                               remove_nans=remove_nans,
                               single_row=single_row,
                               keep_columns=None)

    def statistics(self, columns=None, label=None,
                   remove_nans=False, single_row=False, by=None):
        """Descriptive statistics of each column.
        
        Parameter
        ---------
        columns: None, int or str or list of int or str
            Columns of the table on which statistics should be computed.
            If None apply functions on all columns.
        label: str or list of str
            Column label and optional section names of the first
            column with the function labels (if `single_row` is `False`).
        remove_nans: bool
            If True, remove nans before passing column values to function.
        single_row: bool
            If False, add for each function a row to the table.
            If True, add function values in a single row.
        by: None, int or str or list of int or str
            Group the table by the specified columns and compute statistics
            to each resulting sub-table separately.

        Returns
        -------
        dest: TableData
            A new table with the column headers specified by `columns`.
            For each column that contains numbers some basic
            descriptive statistics is computed.
        """
        if label is None:
            label = 'statistics'
        funcs = {'mean': np.mean,
                 'std': np.std,
                 'min': np.min,
                 ('quartile1', 'median', 'quartile2'):
                     (np.quantile, ([0.25, 0.5, 0.75],)),
                 'max': np.max,
                 'count': len}
        ds = self.aggregate(funcs, columns, label,
                            numbers_only=True,
                            remove_nans=remove_nans,
                            single_row=single_row, by=by)
        if by is not None:
            if not isinstance(by, (list, tuple)):
                by = [by]
            if len(by) > 0:
                single_row = True
        c0 = 0
        if not single_row:
            ds.set_format(0, '%-10s')
            c0 = 1
        for c in range(c0, ds.shape[1]):
            f = ds.formats[c]
            if single_row and ds.label(c) == 'count':
                ds.set_unit(c, '')
                ds.set_format(c, '%d')
            elif f[-1] in 'fge':
                i0 = f.find('.')
                if i0 > 0:
                    p = int(f[i0 + 1:-1])
                    f = f'{f[:i0 + 1]}{p + 1}{f[-1]}'
                ds.set_format(c, f)
            else:
                ds.set_format(c, '%.1f')
        return ds
        
    def groupby(self, *columns):
        """ Iterate through unique values of a column.

        Parameter
        ---------
        columns: int or str
            One or several columns used to group the data.
            See self.index() for more information on how to specify a column.

        Yields
        ------
        values: float or str or tuple of float or str
            The values of the specified columns.
        data: TableData
            The sub table where the specified columns equals `values`.
        """
        # check column indices and values:
        cols = []
        vals = []
        for col in columns:
            c = self.index(col)
            if c is None:
                raise StopIteration
            cols.append(c)
            vals.append(np.unique(self.data[c]))
        for values in product(*vals):
            mask = np.ones(len(self), dtype=bool)
            for c, v in zip(cols, values):
                mask &= self[:, c] == v
            if len(cols) == 1:
                yield values[0], self[mask]
            else:
                yield values, self[mask]

    def hide(self, column):
        """Hide a column or a range of columns.

        Hidden columns will not be printed out by the write() function.

        Parameters
        ----------
        column: int or str
            The column to be hidden.
            See self.index() for more information on how to specify a column.
        """
        c0, c1 = self.find_col(column)
        if c0 is not None:
            for c in range(c0, c1):
                self.hidden[c] = True

    def hide_all(self):
        """Hide all columns.

        Hidden columns will not be printed out by the write() function.
        """
        for c in range(len(self.hidden)):
            self.hidden[c] = True

    def hide_empty_columns(self, missing=default_missing_inputs):
        """Hide all columns that do not contain data.

        Hidden columns will not be printed out by the write() function.

        Parameters
        ----------
        missing: list of str
            Strings indicating missing data.
        """
        for c in range(len(self.data)):
            # check for empty column:
            isempty = True
            for v in self.data[c]:
                if isinstance(v, (float, np.floating)):
                    if not m.isnan(v):
                        isempty = False
                        break
                else:
                    if not v in missing:
                        isempty = False
                        break
            if isempty:
                self.hidden[c] = True

    def show(self, column):
        """Show a column or a range of columns.

        Undoes hiding of a column.

        Parameters
        ----------
        column: int or str
            The column to be shown.
            See self.index() for more information on how to specify a column.
        """
        c0, c1 = self.find_col(column)
        if c0 is not None:
            for c in range(c0, c1):
                self.hidden[c] = False

    def write(self, fh=sys.stdout, table_format=None, delimiter=None,
              unit_style=None, column_numbers=None, sections=None,
              align_columns=None, shrink_width=True,
              missing=default_missing_str, center_columns=False,
              latex_unit_package=None, latex_label_command='',
              latex_merge_std=False, descriptions_name='-description',
              section_headings=None, maxc=80):
        """Write the table to a file or stream.

        Parameters
        ----------
        fh: filename or stream
            If not a stream, the file with path `fh` is opened.
            If `fh` does not have an extension,
            the `table_format` is appended as an extension.
            Otherwise `fh` is used as a stream for writing.
        table_format: None or str
            The format to be used for output.
            One of 'out', 'dat', 'ascii', 'csv', 'rtai', 'md', 'tex', 'html'.
            If None or 'auto' then the format is set to the extension of the
            filename given by `fh`. If the filename does not have an extension
            `fh` is set to 'csv'. if `fh` is a stream the format is set
            to 'out'.
        delimiter: str
            String or character separating columns, if supported by the
            `table_format`.
            If None or 'auto' use the default for the specified `table_format`.
        unit_style: None or str
            - None or 'auto': use default of the specified `table_format`.
            - 'row': write an extra row to the table header specifying the
              units of the columns.
            - 'header': add the units to the column headers.
            - 'none': do not specify the units.
        column_numbers: str or None
            Add a row specifying the column index:
            - 'index': indices are integers, first column is 0.
            - 'num': indices are integers, first column is 1.
            - 'aa': use 'a', 'b', 'c', ..., 'z', 'aa', 'ab', ... for indexing
            - 'aa': use 'A', 'B', 'C', ..., 'Z', 'AA', 'AB', ... for indexing
            - None or 'none': do not add a row with column indices
            TableData.column_numbering is a list with the supported styles.
        sections: None or int
            Number of section levels to be printed.
            If `None` or 'auto' use default of selected `table_format`.
        align_columns: boolean
            - `True`: set width of column formats to make them align.
            - `False`: set width of column formats to 0 - no unnecessary spaces.
            - None or 'auto': Use default of the selected `table_format`.
        shrink_width: boolean
            If `True` disregard width specified by the format strings,
            such that columns can become narrower.
        missing: str
            Indicate missing data by this string.
        center_columns: boolean
            If True center all columns (markdown, html, and latex).
        latex_unit_package: None or 'siunitx' or 'SIunit'
            Translate units for the specified LaTeX package.
            If None set sub- and superscripts in text mode.
            If 'siunitx', also use `S` columns for numbers to align
            them on the decimal point.
        latex_label_command: str
            LaTeX command for formatting header labels.
            E.g. 'textbf' for making the header labels bold.
        latex_merge_std: str
            Merge header of columns with standard deviations with
            previous column (LaTeX tables only), but separate them
            with $\\pm$. Valid labels for standrad deviations are
            listed in `TableData.stdev_labels`.
        descriptions_name: None or str
            If not None and if `fh` is a file path, then write the column
            descriptions to a file with the same name as `fh`, but with
            `descriptions_name` appended.
        section_headings: None or int
            How to write treat header sections in the column descriptions.
            If set, set header sections as headings with the top-level
            section at the level as specified. 0 is the top level.
            If False, just produce a nested list.
        maxc: int
            Maximum character count for each line in the column descriptions.
        
        Returns
        -------
        file_name: Path or None
            The full name of the file into which the data were written.

        Supported file formats
        ----------------------
        
        ## `dat`: data text file
        ``` plain
        # info           reaction     
        # size   weight  delay  jitter
        # m      kg      ms     mm    
           2.34     123   98.7      23
          56.70    3457   54.3      45
           8.90      43   67.9     345
        ```

        ## `ascii`: ascii-art table
        ``` plain
        |---------------------------------|
        | info           | reaction       |
        | size  | weight | delay | jitter |
        | m     | kg     | ms    | mm     |
        |-------|--------|-------|--------|
        |  2.34 |    123 |  98.7 |     23 |
        | 56.70 |   3457 |  54.3 |     45 |
        |  8.90 |     43 |  67.9 |    345 |
        |---------------------------------|
        ```

        ## `csv`: comma separated values
        ``` plain
        size/m,weight/kg,delay/ms,jitter/mm
        2.34,123,98.7,23
        56.70,3457,54.3,45
        8.90,43,67.9,345
        ```

        ## `rtai`: rtai-style table
        ``` plain
        RTH| info         | reaction     
        RTH| size | weight| delay| jitter
        RTH| m    | kg    | ms   | mm    
        RTD|  2.34|    123|  98.7|     23
        RTD| 56.70|   3457|  54.3|     45
        RTD|  8.90|     43|  67.9|    345
        ```

        ## `md`: markdown
        ``` plain
        | size/m | weight/kg | delay/ms | jitter/mm |
        |------:|-------:|------:|-------:|
        |  2.34 |    123 |  98.7 |     23 |
        | 56.70 |   3457 |  54.3 |     45 |
        |  8.90 |     43 |  67.9 |    345 |
        ```

        ## `tex`: latex tabular
        ``` tex
        \\begin{tabular}{rrrr}
          \\hline
          \\multicolumn{2}{l}{info} & \\multicolumn{2}{l}{reaction} \\
          \\multicolumn{1}{l}{size} & \\multicolumn{1}{l}{weight} & \\multicolumn{1}{l}{delay} & \\multicolumn{1}{l}{jitter} \\
          \\multicolumn{1}{l}{m} & \\multicolumn{1}{l}{kg} & \\multicolumn{1}{l}{ms} & \\multicolumn{1}{l}{mm} \\
          \\hline
          2.34 & 123 & 98.7 & 23 \\
          56.70 & 3457 & 54.3 & 45 \\
          8.90 & 43 & 67.9 & 345 \\
          \\hline
        \\end{tabular}
        ```

        ## `html`: html
        ``` html
        <table>
        <thead>
          <tr class="header">
            <th align="left" colspan="2">info</th>
            <th align="left" colspan="2">reaction</th>
          </tr>
          <tr class="header">
            <th align="left">size</th>
            <th align="left">weight</th>
            <th align="left">delay</th>
            <th align="left">jitter</th>
          </tr>
          <tr class="header">
            <th align="left">m</th>
            <th align="left">kg</th>
            <th align="left">ms</th>
            <th align="left">mm</th>
          </tr>
        </thead>
        <tbody>
          <tr class"odd">
            <td align="right">2.34</td>
            <td align="right">123</td>
            <td align="right">98.7</td>
            <td align="right">23</td>
          </tr>
          <tr class"even">
            <td align="right">56.70</td>
            <td align="right">3457</td>
            <td align="right">54.3</td>
            <td align="right">45</td>
          </tr>
          <tr class"odd">
            <td align="right">8.90</td>
            <td align="right">43</td>
            <td align="right">67.9</td>
            <td align="right">345</td>
          </tr>
        </tbody>
        </table>
        ```

        """
        # fix parameter:
        if table_format is not None:
            table_format = table_format.lower()
        if table_format == 'auto':
            table_format = None
        if delimiter == 'auto':
            delimiter = None
        if unit_style == 'auto':
            unit_style = None
        if column_numbers == 'none':
            column_numbers = None
        if sections == 'auto':
            sections = None
        if align_columns == 'auto':
            align_columns = None
        # open file:
        own_file = False
        file_name = None
        if not hasattr(fh, 'write'):
            fh = Path(fh)
            ext = fh.suffix
            if table_format is None:
                if len(ext) > 1 and ext[1:] in self.ext_formats:
                    table_format = self.ext_formats[ext[1:]]
                else:
                    table_format = 'csv'
            if not ext or not ext[1:].lower() in self.ext_formats:
                fh = fh.with_suffix('.' + self.extensions[table_format])
            file_name = fh
            try:
                fh = open(os.fspath(fh), 'w')
            except AttributeError:
                fh = open(str(fh), 'w')
            own_file = True
        if table_format is None:
            table_format = 'out'
        # set style:        
        if table_format[0] == 'd':
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start = '# '
            header_sep = '  '
            header_close = ''
            header_end = '\n'
            data_start = '  '
            data_sep = '  '
            data_close = ''
            data_end = '\n'
            top_line = False
            header_line = False
            bottom_line = False
            if delimiter is not None:
                header_sep = delimiter
                data_sep = delimiter
            if sections is None:
                sections = 1000
        elif table_format[0] == 'a':
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start = '| '
            header_sep = ' | '
            header_close = ''
            header_end = ' |\n'
            data_start = '| '
            data_sep = ' | '
            data_close = ''
            data_end = ' |\n'
            top_line = True
            header_line = True
            bottom_line = True
            if delimiter is not None:
                header_sep = delimiter
                data_sep = delimiter
            if sections is None:
                sections = 1000
        elif table_format[0] == 'c':
            # csv according to http://www.ietf.org/rfc/rfc4180.txt :
            column_numbers=None
            if unit_style is None:
                unit_style = 'header'
            if align_columns is None:
                align_columns = False
            begin_str = ''
            end_str = ''
            header_start=''
            header_sep = ','
            header_close = ''
            header_end='\n'
            data_start=''
            data_sep = ','
            data_close = ''
            data_end='\n'
            top_line = False
            header_line = False
            bottom_line = False
            if delimiter is not None:
                header_sep = delimiter
                data_sep = delimiter
            if sections is None:
                sections = 0
        elif table_format[0] == 'r':
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start = 'RTH| '
            header_sep = '| '
            header_close = ''
            header_end = '\n'
            data_start = 'RTD| '
            data_sep = '| '
            data_close = ''
            data_end = '\n'
            top_line = False
            header_line = False
            bottom_line = False
            if sections is None:
                sections = 1000
        elif table_format[0] == 'm':
            if unit_style is None or unit_style == 'row':
                unit_style = 'header'
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start='| '
            header_sep = ' | '
            header_close = ''
            header_end=' |\n'
            data_start='| '
            data_sep = ' | '
            data_close = ''
            data_end=' |\n'
            top_line = False
            header_line = True
            bottom_line = False
            if sections is None:
                sections = 0
        elif table_format[0] == 'h':
            align_columns = False
            begin_str = '<table>\n<thead>\n'
            end_str = '</tbody>\n</table>\n'
            if center_columns:
                header_start='  <tr>\n    <th align="center"'
                header_sep = '</th>\n    <th align="center"'
            else:
                header_start='  <tr>\n    <th align="left"'
                header_sep = '</th>\n    <th align="left"'
            header_close = '>'
            header_end='</th>\n  </tr>\n'
            data_start='  <tr>\n    <td'
            data_sep = '</td>\n    <td'
            data_close = '>'
            data_end='</td>\n  </tr>\n'
            top_line = False
            header_line = False
            bottom_line = False
            if sections is None:
                sections = 1000
        elif table_format[0] == 't':
            if align_columns is None:
                align_columns = False
            begin_str = '\\begin{tabular}'
            end_str = '\\end{tabular}\n'
            header_start='  '
            header_sep = ' & '
            header_close = ''
            header_end=' \\\\\n'
            data_start='  '
            data_sep = ' & '
            data_close = ''
            data_end=' \\\\\n'
            top_line = True
            header_line = True
            bottom_line = True
            if sections is None:
                sections = 1000
        else:
            if align_columns is None:
                align_columns = True
            begin_str = ''
            end_str = ''
            header_start = ''
            header_sep = '  '
            header_close = ''
            header_end = '\n'
            data_start = ''
            data_sep = '  '
            data_close = ''
            data_end = '\n'
            top_line = False
            header_line = False
            bottom_line = False
            if sections is None:
                sections = 1000
        # check units:
        if unit_style is None:
            unit_style = 'row'
        have_units = False
        for u in self.units:
            if u and u != '1' and u != '-':
                have_units = True
                break
        if not have_units:
            unit_style = 'none'
        # find std columns:
        stdev_col = np.zeros(len(self.header), dtype=bool)
        for c in range(len(self.header) - 1):
            if self.header[c+1][0].lower() in self.stdev_labels and \
               not self.hidden[c+1]:
                stdev_col[c] = True
        # begin table:
        fh.write(begin_str)
        if table_format[0] == 't':
            fh.write('{')
            merged = False
            for h, f, s in zip(self.hidden, self.formats, stdev_col):
                if merged:
                    fh.write('l')
                    merged = False
                    continue
                if h:
                    continue
                if latex_merge_std and s:
                    fh.write('r@{$\\,\\pm\\,$}')
                    merged = True
                elif center_columns:
                    fh.write('c')
                elif f[1] == '-':
                    fh.write('l')
                else:
                    if latex_unit_package is not None and \
                       latex_unit_package.lower() == 'siunitx':
                        fh.write('S')
                    else:
                        fh.write('r')
            fh.write('}\n')
        # retrieve column formats and widths:
        widths = []       # width from format string
        widths_pos = []   # start and end index of width specifyer in format
        for c, f in enumerate(self.formats):
            w = 0
            # position of width specification:
            i0 = 1
            if len(f) > 1 and f[1] == '-' :
                i0 = 2
            i1 = f.find('.')
            if i1 < 0:
                i1 = i0
                while i1 < len(f) and f[i1].isdigit():
                    i1 += 1
            if not shrink_width and i1 > i0:
                if f[i0:i1]:
                    w = int(f[i0:i1])
            widths_pos.append((i0, i1))
            # adapt width to header label:
            hw = len(self.header[c][0])
            if unit_style == 'header' and self.units[c] and \
               self.units[c] != '1' and self.units[c] != '-':
                hw += 1 + len(self.units[c])
            if w < hw:
                w = hw
            # adapt width to data:
            if f[-1] == 's':
                for v in self.data[c]:
                    if isinstance(v, str) and w < len(v):
                        w = len(v)
            else:
                fs = f'{f[:i0]}0{f[i1:]}'
                for v in self.data[c]:
                    if v is None or (isinstance(v, (float, np.floating)) and
                                     m.isnan(v)):
                        s = missing
                    else:
                        try:
                            s = fs % v
                        except ValueError:
                            s = missing
                        except TypeError:
                            s = str(v)
                    if w < len(s):
                        w = len(s)
            widths.append(w)
        # adapt width to sections:
        sec_indices = [0] * self.nsecs  # previous column with this level
        sec_widths = [0] * self.nsecs   # total width of section level
        sec_columns = [0] * self.nsecs  # number of columns in section level
        for c in range(len(self.header)):
            w = widths[c]
            for l in range(min(self.nsecs, sections)):
                if 1 + l < len(self.header[c]):
                    if c > 0 and sec_columns[l] > 0 and \
                       1 + l < len(self.header[sec_indices[l]]) and \
                       len(self.header[sec_indices[l]][1 + l]) > sec_widths[l]:
                        dw = len(self.header[sec_indices[l]][1 + l]) - sec_widths[l]
                        nc = sec_columns[l]
                        ddw = np.zeros(nc, dtype=int) + dw // nc
                        ddw[:dw % nc] += 1
                        wk = 0
                        for ck in range(sec_indices[l], c):
                            if not self.hidden[ck]:
                                widths[ck] += ddw[wk]
                                wk += 1
                    sec_indices[l] = c
                    sec_widths[l] = 0
                    sec_columns[l] = 0
                if not self.hidden[c]:
                    if sec_widths[l] > 0:
                        sec_widths[l] += len(header_sep)
                    sec_widths[l] += w
                    sec_columns[l] += 1
        # set width of format string:
        formats = []
        for c, (f, w) in enumerate(zip(self.formats, widths)):
            formats.append(f'{f[:widths_pos[c][0]]}{w}{f[widths_pos[c][1]:]}')
        # top line:
        if top_line:
            if table_format[0] == 't':
                fh.write('  \\hline \\\\[-2ex]\n')
            else:
                first = True
                fh.write(header_start.replace(' ', '-'))
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    if not first:
                        fh.write('-'*len(header_sep))
                    first = False
                    fh.write(header_close)
                    w = widths[c]
                    fh.write(w*'-')
                fh.write(header_end.replace(' ', '-'))
        # section and column headers:
        nsec0 = self.nsecs - sections
        if nsec0 < 0:
            nsec0 = 0
        for ns in range(nsec0, self.nsecs+1):
            nsec = self.nsecs - ns
            first = True
            last = False
            merged = False
            fh.write(header_start)
            for c in range(len(self.header)):
                if nsec < len(self.header[c]):
                    # section width and column count:
                    sw = -len(header_sep)
                    columns = 0
                    if not self.hidden[c]:
                        sw = widths[c]
                        columns = 1
                    for k in range(c+1, len(self.header)):
                        if nsec < len(self.header[k]):
                            break
                        if self.hidden[k]:
                            continue
                        sw += len(header_sep) + widths[k]
                        columns += 1
                    else:
                        last = True
                        if len(header_end.strip()) == 0:
                            sw = 0  # last entry needs no width
                    if columns == 0:
                        continue
                    if not first and not merged:
                        fh.write(header_sep)
                    first = False
                    if table_format[0] == 'c':
                        sw -= len(header_sep)*(columns - 1)
                    elif table_format[0] == 'h':
                        if columns>1:
                            fh.write(' colspan="%d"' % columns)
                    elif table_format[0] == 't':
                        if merged:
                            merged = False
                            continue
                        if latex_merge_std and nsec == 0 and stdev_col[c]:
                            merged = True
                            fh.write('\\multicolumn{%d}{c}{' % (columns+1))
                        elif center_columns:
                            fh.write('\\multicolumn{%d}{c}{' % columns)
                        else:
                            fh.write('\\multicolumn{%d}{l}{' % columns)
                        if latex_label_command:
                            fh.write('\\%s{' % latex_label_command)
                    fh.write(header_close)
                    hs = self.header[c][nsec]
                    if nsec == 0 and unit_style == 'header':
                        if self.units[c] and self.units[c] != '1' and self.units[c] != '-':
                            hs += '/' + self.units[c]
                    if align_columns and not table_format[0] in 'th':
                        f = '%%-%ds' % sw
                        fh.write(f % hs)
                    else:
                        fh.write(hs)
                    if table_format[0] == 'c':
                        if not last:
                            fh.write(header_sep*(columns - 1))
                    elif table_format[0] == 't':
                        if latex_label_command:
                            fh.write('}')
                        fh.write('}')
            fh.write(header_end)
        # units:
        if unit_style == 'row':
            first = True
            merged = False
            fh.write(header_start)
            for c in range(len(self.header)):
                if self.hidden[c] or merged:
                    merged = False
                    continue
                if not first:
                    fh.write(header_sep)
                first = False
                fh.write(header_close)
                unit = self.units[c]
                if not unit:
                    unit = '-'
                if table_format[0] == 't':
                    if latex_merge_std and stdev_col[c]:
                        merged = True
                        fh.write('\\multicolumn{2}{c}{%s}' % latex_unit(unit, latex_unit_package))
                    elif center_columns:
                        fh.write('\\multicolumn{1}{c}{%s}' % latex_unit(unit, latex_unit_package))
                    else:
                        fh.write('\\multicolumn{1}{l}{%s}' % latex_unit(unit, latex_unit_package))
                else:
                    if align_columns and not table_format[0] in 'h':
                        f = '%%-%ds' % widths[c]
                        fh.write(f % unit)
                    else:
                        fh.write(unit)
            fh.write(header_end)
        # column numbers:
        if column_numbers is not None:
            first = True
            fh.write(header_start)
            for c in range(len(self.header)):
                if self.hidden[c]:
                    continue
                if not first:
                    fh.write(header_sep)
                first = False
                fh.write(header_close)
                i = c
                if column_numbers == 'num':
                    i = c+1
                aa = index2aa(c, 'a')
                if column_numbers == 'AA':
                    aa = index2aa(c, 'A')
                if table_format[0] == 't':
                    if column_numbers == 'num' or column_numbers == 'index':
                        fh.write('\\multicolumn{1}{l}{%d}' % i)
                    else:
                        fh.write('\\multicolumn{1}{l}{%s}' % aa)
                else:
                    if column_numbers == 'num' or column_numbers == 'index':
                        if align_columns:
                            f = '%%%dd' % widths[c]
                            fh.write(f % i)
                        else:
                            fh.write('%d' % i)
                    else:
                        if align_columns:
                            f = '%%-%ds' % widths[c]
                            fh.write(f % aa)
                        else:
                            fh.write(aa)
            fh.write(header_end)
        # header line:
        if header_line:
            if table_format[0] == 'm':
                fh.write('|')
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    w = widths[c]+2
                    if center_columns:
                        fh.write(':' + (w-2)*'-' + ':|')
                    elif formats[c][1] == '-':
                        fh.write(w*'-' + '|')
                    else:
                        fh.write((w - 1)*'-' + ':|')
                fh.write('\n')
            elif table_format[0] == 't':
                fh.write('  \\hline \\\\[-2ex]\n')
            else:
                first = True
                fh.write(header_start.replace(' ', '-'))
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    if not first:
                        fh.write(header_sep.replace(' ', '-'))
                    first = False
                    fh.write(header_close)
                    w = widths[c]
                    fh.write(w*'-')
                fh.write(header_end.replace(' ', '-'))
        # start table data:
        if table_format[0] == 'h':
            fh.write('</thead>\n<tbody>\n')
        # data:
        for k in range(self.rows()):
            first = True
            merged = False
            fh.write(data_start)
            for c, f in enumerate(formats):
                if self.hidden[c] or merged:
                    merged = False
                    continue
                if not first:
                    fh.write(data_sep)
                first = False
                if table_format[0] == 'h':
                    if center_columns:
                        fh.write(' align="center"')
                    elif f[1] == '-':
                        fh.write(' align="left"')
                    else:
                        fh.write(' align="right"')
                fh.write(data_close)
                if k >= len(self.data[c]) or self.data[c][k] is None or \
                   (isinstance(self.data[c][k], (float, np.floating)) and m.isnan(self.data[c][k])):
                    # missing data:
                    if table_format[0] == 't' and latex_merge_std and stdev_col[c]:
                        merged = True
                        fh.write('\\multicolumn{2}{c}{%s}' % missing)
                    elif align_columns:
                        if f[1] == '-':
                            fn = '%%-%ds' % widths[c]
                        else:
                            fn = '%%%ds' % widths[c]
                        fh.write(fn % missing)
                    else:
                        fh.write(missing)
                else:
                    # data value:
                    try:
                        ds = f % self.data[c][k]
                    except ValueError:
                        ds = missing
                    except TypeError:
                        ds = str(self.data[c][k])
                    if not align_columns:
                        ds = ds.strip()
                    fh.write(ds)
            fh.write(data_end)
        # bottom line:
        if bottom_line:
            if table_format[0] == 't':
                fh.write('  \\hline\n')
            else:
                first = True
                fh.write(header_start.replace(' ', '-'))
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    if not first:
                        fh.write('-'*len(header_sep))
                    first = False
                    fh.write(header_close)
                    w = widths[c]
                    fh.write(w*'-')
                fh.write(header_end.replace(' ', '-'))
        # end table:
        fh.write(end_str)
        # close file:
        if own_file:
            fh.close()
        # write descriptions:
        if file_name is not None and descriptions_name:
            write_descriptions = False
            for c in range(len(self.descriptions)):
                if self.descriptions[c]:
                    write_descriptions = True
            if write_descriptions:
                descr_path = file_name.with_name(file_name.stem +
                                                 descriptions_name)
                if table_format[0] not in 'th': # neither tex nore html
                    table_format = 'md'
                if len(descr_path.suffix) <= 1:
                    descr_path = descr_path.with_suffix('.' + self.extensions[table_format])
                self.write_descriptions(descr_path, table_format=table_format,
                                        sections=sections,
                                        section_headings=section_headings,
                                        latex_unit_package=latex_unit_package,
                                        maxc=maxc)
        # return file name:
        return file_name

    def write_file_stream(self, base_name, file_name, **kwargs):
        """Write table to file or stream and return appropriate file name.

        Parameters
        ----------
        base_name: str, Path, or stream
            If str, path and basename of file.
            `file_name` and an extension are appended.
            If stream, write table data into this stream.
        file_name: str
            Name of file that is appended to `base_name`.
        kwargs:
            Arguments passed on to `TableData.write()`.
            In particular, 'table_format' is used to set the file extension
            that is appended to the returned `file_name`.

        Returns
        -------
        file_name: Path
            Path and full name of the written file in case of `base_name`
            being a string. Otherwise, the file name and extension that
            should be appended to a base name.
        """
        if hasattr(base_name, 'write'):
            table_format = kwargs.get('table_format', None)
            if table_format is None or table_format == 'auto':
                table_format = 'csv'
            file_name = Path(file_name)
            file_name = file_name.with_suffix('.' + TableData.extensions[table_format])
            self.write(base_name, **kwargs)
            return file_name
        else:
            base_name = Path(base_name + file_name)
            file_name = self.write(base_name, **kwargs)
            return file_name

    def __str__(self):
        """Write table to a string.
        """
        stream = StringIO()
        self.write(stream, table_format='out')
        return stream.getvalue()
                
    def write_descriptions(self, fh=sys.stdout, table_format=None,
                           sections=None, section_headings=None,
                           latex_unit_package=None, maxc=80):
        """Write column descriptions of the table to a file or stream.

        Parameters
        ----------
        fh: filename or stream
            If not a stream, the file with path `fh` is opened.
            If `fh` does not have an extension,
            the `table_format` is appended as an extension.
            Otherwise `fh` is used as a stream for writing.
        table_format: None or str
            The format to be used for output.
            One of 'md', 'tex', or 'html'.
            If None or 'auto' then the format is set to the extension
            of the filename given by `fh`.
            If `fh` is a stream the format is set to 'md'.
        sections: None or int
            Number of section levels to be printed.
            If `None` or 'auto' use default of selected `table_format`.
        section_headings: None or int
            If set, set header sections as headings with the top-level
            section at the level as specified. 0 is the top level.
            If False, just produce a nested list.
        latex_unit_package: None or 'siunitx' or 'SIunit'
            Translate units for the specified LaTeX package.
            If None set sub- and superscripts in text mode.
            If 'siunitx', also use `S` columns for numbers to align
            them on the decimal point.
        maxc: int
            Maximum character count for each line.
        """
        # fix parameter:
        if table_format == 'auto':
            table_format = None
        if sections is None:
            sections = 1000
        nsecs = min(self.nsecs, sections)
        # open file:
        own_file = False
        file_name = None
        if not hasattr(fh, 'write'):
            fh = Path(fh)
            ext = fh.suffix
            if table_format is None:
                if len(ext) > 1 and ext[1:] in self.ext_formats:
                    table_format = self.ext_formats[ext[1:]]
            elif not ext or not ext[1:].lower() in self.ext_formats:
                fh = fh.with_suffix('.' + self.extensions[table_format])
            file_name = fh
            try:
                fh = open(os.fspath(fh), 'w')
            except AttributeError:
                fh = open(str(fh), 'w')
            own_file = True
        if table_format is None:
            table_format = 'md'
        # write descriptions:
        headers = ['']*(1 + nsecs)
        prev_headers = ['']*(1 + nsecs)
        if table_format == 'md':
            for c in range(len(self.header)):
                headers[:len(self.header[c])] = self.header[c]
                if not self.hidden[c]:
                    changed = False
                    for k in reversed(range(nsecs)):
                        if changed or prev_headers[k + 1] != headers[k + 1]:
                            changed = True
                            if section_headings is None:
                                fh.write(f'{" "*2*(nsecs - k - 1)}- '
                                         f'{headers[k + 1]}\n')
                            else:
                                level = nsecs - k - 1 + section_headings + 1
                                fh.write(f'\n{"#"*level} {headers[k + 1]}\n')
                            prev_headers[k + 1] = headers[k + 1]
                    indent = 2*nsecs if section_headings is None else 0
                    fh.write(f'{" "*indent}- **{headers[0]}**')
                    if self.units[c]:
                        fh.write(f' [{self.units[c]}]')
                    fh.write('  \n')
                    break_text(fh, self.descriptions[c], maxc,
                               indent=indent + 2)
                    prev_headers[0] = headers[0]
        elif table_format == 'html':
            level = -1
            for c in range(len(self.header)):
                headers[:len(self.header[c])] = self.header[c]
                if not self.hidden[c]:
                    changed = False
                    for k in reversed(range(nsecs)):
                        if changed or prev_headers[k + 1] != headers[k + 1]:
                            new_level = nsecs - k - 1
                            if not changed:
                                if section_headings is None:
                                    while level > new_level:
                                        fh.write(f'{" "*2*level}</ul>\n')
                                        level -= 1
                                elif level >= 0:
                                    fh.write(f'{" "*2*level}</ul>\n')
                                    level -= 1
                            changed = True
                            if section_headings is None:
                                while level < new_level:
                                    level += 1
                                    fh.write(f'{" "*2*level}<ul>\n')
                                fh.write(f'{" "*2*(level + 1)}<li><b>{headers[k + 1]}</b></li>\n')
                            else:
                                fh.write(f'\n<h{new_level + section_headings + 1}>{headers[k + 1]}</h{new_level + section_headings + 1}>\n')
                            prev_headers[k + 1] = headers[k + 1]
                    if changed:
                        level += 1
                        fh.write(f'{" "*2*level}<ul>\n')
                        
                    fh.write(f'{" "*2*(level + 1)}<li><b>{headers[0]}</b>')
                    if self.units[c]:
                        fh.write(f'[{self.units[c]}]')
                    fh.write('<br>\n')
                    break_text(fh, self.descriptions[c], maxc,
                               indent=2*(level + 1))
                    fh.write(f'{" "*2*(level + 1)}</li>\n')
                    prev_headers[0] = headers[0]
            while level >= 0:
                fh.write(f'{" "*2*level}</ul>\n')
                level -= 1
        elif table_format == 'tex':
            headings = [r'\section', r'\subsection', r'\subsubsection',
                        r'\paragraph', r'\subparagraph']
            level = -1
            for c in range(len(self.header)):
                headers[:len(self.header[c])] = self.header[c]
                if not self.hidden[c]:
                    changed = False
                    for k in reversed(range(nsecs)):
                        if changed or prev_headers[k + 1] != headers[k + 1]:
                            new_level = nsecs - k - 1
                            if not changed:
                                if section_headings is None:
                                    while level > new_level:
                                        fh.write(f'{" "*2*level}\\end{{enumerate}}\n')
                                        level -= 1
                                elif level >= 0:
                                    fh.write(f'{" "*2*level}\\end{{enumerate}}\n')
                                    level -= 1
                            changed = True
                            if section_headings is None:
                                while level < new_level:
                                    level += 1
                                    fh.write(f'{" "*2*level}\\begin{{enumerate}}\n')
                                fh.write(f'{" "*2*(level + 1)}\\item \\textbf{{{headers[k + 1]}}}\n')
                            else:
                                fh.write(f'\n{headings[new_level + section_headings]}{{{headers[k + 1]}}}\n')
                            prev_headers[k + 1] = headers[k + 1]
                    if changed:
                        level += 1
                        fh.write(f'{" "*2*level}\\begin{{enumerate}}\n')
                    fh.write(f'{" "*2*(level + 1)}\\item \\textbf{{{headers[0]}}}')
                    if self.units[c]:
                        fh.write(f' [{latex_unit(self.units[c], latex_unit_package)}]')
                    fh.write('\n')
                    break_text(fh, self.descriptions[c], maxc,
                               indent=2*(level + 1))
                    prev_headers[0] = headers[0]
            while level >= 0:
                fh.write(f'{" "*2*level}\\end{{enumerate}}\n')
                level -= 1
        else:
            raise ValueError(f'File format "{table_format}" not supported for writing column descriptions')
        # close file:
        if own_file:
            fh.close()
        # return file name:
        return file_name

    def load_descriptions(fh):
        """Load column descriptions from file or stream.

        Parameters
        ----------
        fh: str, Path, or stream
            If not a stream, the file with path `fh` is opened for reading.
        """
        # open file:
        own_file = False
        if not hasattr(fh, 'readline'):
            try:
                fh = open(os.fspath(fh), 'r')
            except AttributeError:
                fh = open(str(fh), 'r')
            own_file = True
        # read file:
        print('WARNING: load_descriptions() not implemented yet')
        for line in fh:
            if line[0] == '#':
                heading_level = len(line.split()[0])
                section_name = line[heading_level + 1:]
            elif line[0] == '-':
                lp = line.split('**')
                label = lp[1]
                unit = lp[-1].strip().lstrip('[').rstrip(']')
        # close file:
        if own_file:
            fh.close()
        
    def load(self, fh, missing=default_missing_inputs, sep=None, stop=None):
        """Load table from file or stream.

        File type and properties are automatically inferred.

        Parameters
        ----------
        fh: str, Path, or stream
            If not a stream, the file with path `fh` is opened for reading.
        missing: str or list of str
            Missing data are indicated by this string and
            are translated to np.nan.
        sep: str or None
            Column separator.
        stop: str or None
            If a line matches `stop`, stop reading the file.  `stop`
            can be an empty string to stop reading at the first empty
            line.

        Raises
        ------
        FileNotFoundError:
            If `fh` is a path that does not exist.

        """

        def read_key_line(line, sep, table_format):
            if sep is None:
                cols, indices = zip(*[(m.group(0), m.start()) for m in re.finditer(r'( ?[\S]+)+(?=[ ][ ]+|\Z)', line.strip())])
            elif table_format == 'csv':
                cols, indices = zip(*[(c.strip(), i) for i, c in enumerate(line.strip().split(sep)) if c.strip()])
            else:
                seps = r'[^'+re.escape(sep)+']+'
                cols, indices = zip(*[(m.group(0), m.start()) for m in re.finditer(seps, line.strip())])
            colss = []
            indicess = []
            if table_format == 'tex':
                i = 0
                for c in cols:
                    if 'multicolumn' in c:
                        fields = c.split('{')
                        n = int(fields[1].strip().rstrip('}').rstrip())
                        colss.append(fields[3].strip().rstrip('}').rstrip())
                        indicess.append(i)
                        i += n
                    else:
                        colss.append(c.strip())
                        indicess.append(i)
                        i += 1
            else:
                for k, (c, i) in enumerate(zip(cols, indices)):
                    if table_format != 'csv':
                        if k == 0:
                            c = c.lstrip('|')
                        if k == len(cols) - 1:
                            c = c.rstrip('|')
                    cs = c.strip()
                    if len(cs) >= 2 and cs[0] == '"' and cs[-1] == '"':
                        cs = cs.strip('"')
                    colss.append(cs)
                    indicess.append(i)
            return colss, indicess

        def read_data_line(line, sep, post, precd, alld, numc, exped,
                           fixed, strf, missing, nans):
            # read line:
            cols = []
            if sep is None:
                cols = [m.group(0) for m in re.finditer(r'\S+', line.strip())]
            else:
                if sep.isspace():
                    seps = r'[^'+re.escape(sep)+']+'
                    cols = [m.group(0) for m in re.finditer(seps, line.strip())]
                else:
                    cols = line.split(sep)
                    if len(cols) > 0 and len(cols[0]) == 0:
                        cols = cols[1:]
                    if len(cols) > 0 and len(cols[-1]) == 0:
                        cols = cols[:-1]
                if len(cols) > 0:
                    cols[0] = cols[0].lstrip('|').lstrip()
                    cols[-1] = cols[-1].rstrip('|').rstrip()
            cols = [c.strip() for c in cols if c != '|']
            # read columns:
            for k, c in enumerate(cols):
                try:
                    v = float(c)
                    ad = 0
                    ve = c.split('e')
                    if len(ve) <= 1:
                        exped[k] = False
                    else:
                        ad = len(ve[1])+1
                    vc = ve[0].split('.')
                    ad += len(vc[0])
                    prec = len(vc[0].lstrip('-').lstrip('+').lstrip('0')) 
                    if len(vc) == 2:
                        if numc[k] and post[k] != len(vc[1]):
                            fixed[k] = False
                        if post[k] < len(vc[1]):
                            post[k] = len(vc[1])
                        ad += len(vc[1])+1
                        prec += len(vc[1].rstrip('0'))
                    if precd[k] < prec:
                        precd[k] = prec
                    if alld[k] < ad:
                        alld[k] = ad
                    numc[k] = True
                except ValueError:
                    if c in missing:
                        v = np.nan
                        nans[k] = c
                    elif len(c) == 0 and not strf[k]:
                        v = np.nan
                    else:
                        strf[k] = True
                        if alld[k] < len(c):
                            alld[k] = len(c)
                        if len(c) >= 2 and c[0] == '"' and c[-1] == '"':
                            v = c.strip('"')
                        else:
                            v = c
                self.add(v, k)
            self.fill_data()

        # initialize:
        if isinstance(missing, str):
            missing = [missing]
        self.data = []
        self.ndim = 2
        self.shape = (0, 0)
        self.header = []
        self.nsecs = 0
        self.units = []
        self.formats = []
        self.descriptions = []
        self.hidden = []
        self.setcol = 0
        self.addcol = 0
        # open file:
        own_file = False
        if not hasattr(fh, 'readline'):
            try:
                fh = open(os.fspath(fh), 'r')
            except AttributeError:
                fh = open(str(fh), 'r')
            own_file = True
        # read inital lines of file:
        key = []
        data = []
        target = data
        comment = False
        table_format='dat'        
        for line in fh:
            line = line.rstrip()
            if line == stop:
                break;
            if line:
                if r'\begin{tabular' in line:
                    table_format='tex'
                    target = key
                    continue
                if table_format == 'tex':
                    if r'\end{tabular' in line:
                        break
                    if r'\hline' in line:
                        if key:
                            target = data
                        continue
                    line = line.rstrip(r'\\')
                if line[0] == '#':
                    comment = True
                    table_format='dat'        
                    target = key
                    line = line.lstrip('#')
                elif comment:
                    target = data
                if line[0:3] == 'RTH':
                    target = key
                    line = line[3:]
                    table_format='rtai'
                elif line[0:3] == 'RTD':
                    target = data
                    line = line[3:]
                    table_format='rtai'        
                if (line[0:3] == '|--' or line[0:3] == '|:-') and \
                   (line[-3:] == '--|' or line[-3:] == '-:|'):
                    if not data and not key:
                        table_format='ascii'
                        target = key
                        continue
                    elif not key:
                        table_format='md'
                        key = data
                        data = []
                        target = data
                        continue
                    elif not data:
                        target = data
                        continue
                    else:
                        break
                target.append(line)
            else:
                break
            if len(data) > 5:
                break
        # find column separator of data and number of columns:
        col_seps = ['|', ',', ';', ':', '\t', '&', None]
        if sep is not None:
            col_seps = [sep]
        colstd = np.zeros(len(col_seps))
        colnum = np.zeros(len(col_seps), dtype=int)
        for k, sep in enumerate(col_seps):
            cols = []
            s = 5 if len(data) >= 8 else len(data) - 3
            if s < 0 or key:
                s = 0
            for line in data[s:]:
                cs = line.strip().split(sep)
                if not cs[0]:
                    cs = cs[1:]
                if cs and not cs[-1]:
                    cs = cs[:-1]
                cols.append(len(cs))
            colstd[k] = np.std(cols)
            colnum[k] = np.median(cols)
        if np.max(colnum) < 2:
            sep = None
            colnum = 1
        else:
            ci = np.where(np.array(colnum) > 1.5)[0]
            ci = ci[np.argmin(colstd[ci])]
            sep = col_seps[ci]
            colnum = int(colnum[ci])
        # fix key:
        if not key and sep is not None and sep in ',;:\t|':
            table_format = 'csv'
        # read key:
        key_cols = []
        key_indices = []
        for line in key:
            cols, indices = read_key_line(line, sep, table_format)
            key_cols.append(cols)
            key_indices.append(indices)
        if not key_cols:
            # no obviously marked table key:
            key_num = 0
            for line in data:
                cols, indices = read_key_line(line, sep, table_format)
                numbers = 0
                for c in cols:
                    try:
                        v = float(c)
                        numbers += 1
                    except ValueError:
                        break
                if numbers == 0:
                    key_cols.append(cols)
                    key_indices.append(indices)
                    key_num += 1
                else:
                    break
            if len(key_cols) == len(data):
                key_num = 1
                key_cols = key_cols[:1]
                key_indices = key_indices[:1]
                colnum = len(key_cols[0])
            data = data[key_num:]
        kr = len(key_cols) - 1
        # check for key with column indices:
        if kr >= 0:
            cols = key_cols[kr]
            numrow = True
            try:
                pv = int(cols[0])
                for c in cols[1:]:
                    v = int(c)
                    if v != pv+1:
                        numrow = False
                        break
                    pv = v
            except ValueError:
                try:
                    pv = aa2index(cols[0])
                    for c in cols[1:]:
                        v = aa2index(c)
                        if v != pv+1:
                            numrow = False
                            break
                        pv = v
                except ValueError:
                    numrow = False
            if numrow:
                kr -= 1
        # check for unit line:
        units = None
        if kr > 0 and len(key_cols[kr]) == len(key_cols[kr - 1]):
            units = key_cols[kr]
            kr -= 1
        # column labels:
        if kr >= 0:
            if units is None:
                # units may be part of the label:
                labels = []
                units = []
                for c in key_cols[kr]:
                    if c[-1] == ')':
                        lu = c[:-1].split('(')
                        if len(lu) >= 2:
                            labels.append(lu[0].strip())
                            units.append('('.join(lu[1:]).strip())
                            continue
                    lu = c.split('/')
                    if len(lu) >= 2:
                        labels.append(lu[0].strip())
                        units.append('/'.join(lu[1:]).strip())
                    else:
                        labels.append(c)
                        units.append('')
            else:
                labels = key_cols[kr]
            indices = key_indices[kr]
            # init table columns:
            for k in range(colnum):
                self.append(labels[k], units[k], '%g')
        # read in sections:
        while kr > 0:
            kr -= 1
            for sec_label, sec_inx in zip(key_cols[kr], key_indices[kr]):
                col_inx = indices.index(sec_inx)
                self.header[col_inx].append(sec_label)
                if self.nsecs < len(self.header[col_inx]) - 1:
                    self.nsecs = len(self.header[col_inx]) - 1
        # read data:
        post = np.zeros(colnum, dtype=int)
        precd = np.zeros(colnum, dtype=int)
        alld = np.zeros(colnum, dtype=int)
        numc = [False] * colnum
        exped = [True] * colnum
        fixed = [True] * colnum
        strf = [False] * colnum
        nans = [None] * colnum   # for each column the missing string that was encountered.
        for line in data:
            read_data_line(line, sep, post, precd, alld, numc, exped, fixed,
                           strf, missing, nans)
        # read remaining data:
        for line in fh:
            line = line.rstrip()
            if line == stop:
                break;
            if table_format == 'tex':
                if r'\end{tabular' in line or r'\hline' in line:
                    break
                line = line.rstrip(r'\\')
            if (line[0:3] == '|--' or line[0:3] == '|:-') and \
                (line[-3:] == '--|' or line[-3:] == '-:|'):
                break
            if line[0:3] == 'RTD':
                line = line[3:]
            read_data_line(line, sep, post, precd, alld, numc, exped, fixed,
                           strf, missing, nans)
        # set formats:
        for k in range(len(alld)):
            if strf[k]:
                self.set_format(k, '%%-%ds' % alld[k])
                # make sure all elements are strings:
                for i in range(len(self.data[k])):
                    if self.data[k][i] is np.nan:
                        self.data[k][i] = nans[k]
                    else:
                        self.data[k][i] = str(self.data[k][i])
            elif exped[k]:
                self.set_format(k, '%%%d.%de' % (alld[k], post[k]))
            elif fixed[k]:
                self.set_format(k, '%%%d.%df' % (alld[k], post[k]))
            else:
                self.set_format(k, '%%%d.%dg' % (alld[k], precd[k]))
        # close file:
        if own_file:
            fh.close()

Table with numpy-style indexing and hierarchical header including units and formats.

Parameters

data : str, stream, ndarray
  • a filename: load table from file with name data.
  • a stream/file handle: load table from that stream.
  • 1-D or 2-D ndarray of data: the data of the table. Requires als a specified header.
  • pandas data frame.
header : TableData, dict, list of str, list of list of str
Header labels for each column. See `set_labels()' for details.
units : None, TableData, dict, list of str, str
Optional unit strings for each column. See `set_units()' for details.
formats : None, TableData, dict, list of str, str
Optional format strings for each column. See `set_formats()' for details.
descriptions : None, TableData, dict, list of str, str
Optional description strings for each column. See `set_descriptions()' for details.
missing : list of str
Missing data are indicated by one of these strings.
sep : str or None
If data is a file, force sep as column separator.
stop : str or None
If a line matches stop, stop reading the file. stop can be an empty string to stop reading at the first empty line.

Manipulate Table Header

Each column of the table has a label (the name of the column), a unit, and a format specifier. Sections group columns into a hierarchy.

  • __init__(): initialize a TableData from data or a file.
  • append(): append column to the table.
  • insert(): insert a table column at a given position.
  • remove(): remove columns from the table.
  • section(): the section name of a specified column.
  • set_section(): set a section name.
  • append_section(): add sections to the table header.
  • insert_section(): insert a section at a given position of the table header.
  • label(): the name of a column.
  • set_label(): set the name of a column.
  • set_labels(): set the labels of some columns.
  • unit(): the unit of a column.
  • set_unit(): set the unit of a column.
  • set_units(): set the units of some columns.
  • format(): the format string of the column.
  • set_format(): set the format string of a column.
  • set_formats(): set the format strings of some columns.
  • description(): the description of a column.
  • set_description(): set the description of a column.
  • set_descriptions(): set the descriptions of some columns.

For example:

tf = TableData('data.csv')

loads a table directly from a file. See load() for details.

tf = TableData(np.random.randn(4,3), header=['aaa', 'bbb', 'ccc'], units=['m', 's', 'g'], formats='%.2f')    

results in

aaa    bbb    ccc
m      s      g    
 1.45   0.01   0.16
-0.74  -0.58  -1.34
-2.06   0.08   1.47
-0.43   0.60   1.38

A more elaborate way to construct a table is:

df = TableData()
# first column with section names and 3 data values:
df.append(["data", "specimen", "size"], "m", "%6.2f",
          [2.34, 56.7, 8.9])
# next columns with single data values:
df.append("full weight", "kg", "%.0f", 122.8)
df.append_section("all measures")
df.append("speed", "m/s", "%.3g", 98.7)
df.append("median jitter", "mm", "%.1f", 23)
df.append("size", "g", "%.2e", 1.234)
# add a missing value to the second column:
df.add(np.nan, 1)
# fill up the remaining columns of the row:
df.add((0.543, 45, 1.235e2))
# add data to the next row starting at the second column:
df.add([43.21, 6789.1, 3405, 1.235e-4], 1) # next row

results in

data
specimen             all measures
size    full weight  speed     median jitter  size
m       kg           m/s       mm             g       
  2.34          123      98.7           23.0  1.23e+00
 56.70            -     0.543           45.0  1.24e+02
  8.90           43  6.79e+03         3405.0  1.23e-04

Table Columns

Columns can be specified by an index or by the name of a column. In table headers with sections the colum can be specified by the section names and the column name separated by '>'.

  • index(): the column index of a column specifier.
  • __contains__(): check for existence of a column.
  • find_col(): find the start and end index of a column specification.
  • column_spec(): full specification of a column with all its section names.
  • column_head(): the name, unit, and format of a column.
  • table_header(): the header of the table without content.

For example:

df.index('all measures>size)   # returns 4
'speed' in df                       # is True

Iterating Over Columns

A table behaves like an ordered dictionary with column names as keys and the data of each column as values. Iterating over a table goes over columns. Note, however, that the len() of a table is the number of rows, not the number of columns!

  • keys(): list of unique column keys for all available columns.
  • values(): list of column data corresponding to keys().
  • items(): generator over column names and the corresponding data.
  • __iter__(): initialize iteration over data columns.
  • __next__(): return unique column key of next column.
  • data: the table data as a list over columns each containing a list of data elements.

For example:

print('column specifications:')
for c in range(df.columns()):
    print(df.column_spec(c))
print('iterating over column specifications:')
for c, k in enumerate(df):
    print(f'{c}: {k}')
print('keys():')
for c, k in enumerate(df.keys()):
    print(f'{c}: {k}')
print('values():')
for c, v in enumerate(df.values()):
    print(v)
print('iterating over the table:')
for v in df:
    print(v)

results in

column specifications:
data>specimen>size
data>specimen>full weight
data>all measures>speed
data>all measures>median jitter
data>all measures>size
iterating over column specifications:
0: data>specimen>size
1: data>specimen>full weight
2: data>all measures>speed
3: data>all measures>median jitter
4: data>all measures>size
keys():
0: data>specimen>size
1: data>specimen>full weight
2: data>all measures>speed
3: data>all measures>median jitter
4: data>all measures>size
values():
[2.34, 56.7, 8.9]
[122.8, nan, 43.21]
[98.7, 0.543, 6789.1]
[23, 45, 3405]
[1.234, 123.5, 0.0001235]
iterating over the table:
[2.34, 56.7, 8.9]
[122.8, nan, 43.21]
[98.7, 0.543, 6789.1]
[23, 45, 3405]
[1.234, 123.5, 0.0001235]

Accessing Data

In contrast to the iterator functions the [] operator treats the table as a 2D-array where the first index indicates the row and the second index the column.

Rows are indexed by integer row numbers or boolean arrays. Columns are also indexed by integer column numbers, but in addition can be index by their names.

A single index selects rows, unless it is specified by strings. Since strings can only specify column names, this selects whole columns.

Like a numpy array the table can be sliced, and logical indexing can be used to select specific parts of the table.

As for any function, columns can be specified as indices or strings.

  • rows(): the number of rows.
  • columns(): the number of columns.
  • __len__(): the number of rows.
  • ndim: always 2.
  • size: number of elements (sum of length of all data columns), can be smaller than columns()*rows().
  • shape: number of rows and columns.
  • row(): a single row of the table as TableData.
  • row_list(): a single row of the table as list.
  • row_data(): a generator for iterating over rows of the table.
  • row_dict(): a single row of the table as dictionary.
  • col(): a single column of the table as TableData.
  • __call__(): a single column of the table as ndarray.
  • __getitem__(): data elements specified by slice.
  • __setitem__(): assign values to data elements specified by slice.
  • __delitem__(): delete data elements or whole columns or rows.
  • array(): the table data as a ndarray.
  • data_frame(): the table data as a pandas DataFrame.
  • dicts(): the table as a list of dictionaries.
  • dict(): the table as a dictionary.
  • add(): add data elements row-wise.
  • append_data_column(): append data elements to a column.
  • set_column(): set the column where to add data.
  • fill_data(): fill up all columns with missing data.
  • clear_data(): clear content of the table but keep header.
  • clear(): clear the table of any content and header information.
  • key_value(): a data element returned as a key-value pair.
  • aggregate(): apply functions to columns.
  • groupby(): iterate through unique values of columns.

  • sort(): sort the table rows in place.

  • statistics(): descriptive statistics of each column.

For example:

# single column:    
df('size')      # data of 'size' column as ndarray
df['size']      # data of 'size' column as ndarray
df[:, 'size']   # data of 'size' column as ndarray
df.col('size')  # table with the single column 'size'

# single row:    
df[2, :]   # table with data of only the third row
df.row(2)  # table with data of only the third row

# slices:
df[2:5,['size','jitter']]          # sub-table
df[2:5,['size','jitter']].array()  # ndarray with data only

# logical indexing:
df[df['speed'] > 100.0, 'size'] = 0.0 # set size to 0 if speed is > 100

# delete:
del df[3:6, 'weight']  # delete rows 3-6 from column 'weight'
del df[3:5, :]         # delete rows 3-5 completeley
del df[:, 'speed']     # remove column 'speed' from table
del df['speed']        # remove column 'speed' from table
df.remove('weight')    # remove column 'weigth' from table

# sort and statistics:
df.sort(['weight', 'jitter'])
df.statistics()

statistics() returns a table with standard descriptive statistics:

statistics  data
-           specimen             all measures
-           size    full weight  speed     median jitter  size
-           m       kg           m/s       mm             g       
mean         22.65           83   2.3e+03         1157.7  4.16e+01
std          24.23           40  3.18e+03         1589.1  5.79e+01
min           2.34           43     0.543           23.0  1.23e-04
quartile1     5.62           83      49.6           34.0  6.17e-01
median        8.90          123      98.7           45.0  1.23e+00
quartile3    32.80            -  3.44e+03         1725.0  6.24e+01
max          56.70          123  6.79e+03         3405.0  1.24e+02
count         3.00            2         3            3.0  3.00e+00

Write And Load Tables

Table data can be written to a variety of text-based formats including comma separated values, latex and html files. Which columns are written can be controlled by the hide() and show() functions. TableData can be loaded from all the written file formats (except html), also directly via the constructor.

  • hide(): hide a column or a range of columns.
  • hide_all(): hide all columns.
  • hide_empty_columns(): hide all columns that do not contain data.
  • show(): show a column or a range of columns.
  • write(): write table to a file or stream.
  • write_file_stream(): write table to file or stream and return appropriate file name.
  • __str__(): write table to a string.
  • write_descriptions(): write column descriptions of the table to a file or stream.
  • load(): load table from file or stream.
  • formats: list of supported file formats for writing.
  • descriptions: dictionary with descriptions of the supported file formats.
  • extensions: dictionary with default filename extensions for each of the file formats.
  • ext_formats: dictionary mapping filename extensions to file formats.

See documentation of the write() function for examples of the supported file formats.

Class variables

var formats

list of strings: Supported output formats.

var descriptions

dict: Decription of output formats corresponding to formats.

var extensions

dict: Default file extensions for the output formats.

var ext_formats

dict: Mapping of file extensions to the output formats.

var stdev_labels

list: column labels recognized as standard deviations.

Methods

def append(self, label, unit=None, formats=None, description=None, value=None, fac=None, key=None)
Expand source code
def append(self, label, unit=None, formats=None, description=None,
           value=None, fac=None, key=None):
    """Append column to the table.

    Parameters
    ----------
    label: str or list of str
        Optional section titles and the name of the column.
    unit: str or None
        The unit of the column contents.
    formats: str or None
        The C-style format string used for printing out the column content, e.g.
        '%g', '%.2f', '%s', etc.
        If None, the format is set to '%g'.
    description: str or None
        The description of the column contents.
    value: None, float, int, str, etc. or list thereof, or list of dict
        If not None, data for the column.
        If list of dictionaries, extract from each dictionary in the list
        the value specified by `key`. If `key` is `None` use `label` as
        the key.
    fac: float
        If not None, multiply the data values by this number.
    key: None or key of a dictionary
        If not None and `value` is a list of dictionaries,
        extract from each dictionary in the list the value specified
        by `key` and assign the resulting list as data to the column.

    Returns
    -------
    self: TableData
        This TableData
    """
    if self.addcol >= len(self.data):
        if isinstance(label, (list, tuple, np.ndarray)):
            label = list(reversed(label))
            # number of sections larger than what we have so far:
            n = max(0, len(label) - 1 - self.nsecs)
            # find matching sections:
            found = False
            for s in range(1, len(label)):
                for c in range(len(self.header) - 1, -1, -1):
                    if len(self.header[c]) > s - n:
                        if s - n >= 0 and \
                           self.header[c][s - n] == label[s]:
                            # remove matching sections:
                            label = label[:s]
                            found = True
                        break
                if found:
                    break
            # add label and unique sections:
            self.header.append(label)
            label = label[0]
            if n > 0:
                # lift previous header label and sections:
                for c in range(len(self.header) - 1):
                    self.header[c] = ['-']*n + self.header[c]
        else:
            self.header.append([label])
        self.units.append(unit or '')
        self.formats.append(formats or '%g')
        self.descriptions.append(description or '')
        self.hidden.append(False)
        self.data.append([])
        self.nsecs = max(map(len, self.header)) - 1
    else:
        if isinstance(label, (list, tuple, np.ndarray)):
            self.header[self.addcol] = list(reversed(label)) + self.header[self.addcol]
            label = label[-1]
        else:
            self.header[self.addcol] = [label] + self.header[self.addcol]
        self.units[self.addcol] = unit or ''
        self.formats[self.addcol] = formats or '%g'
        self.descriptions[self.addcol] = description or ''
        if self.nsecs < len(self.header[self.addcol]) - 1:
            self.nsecs = len(self.header[self.addcol]) - 1
    if not key:
        key = label
    if value is not None:
        if isinstance(value, (list, tuple, np.ndarray)):
            if key and len(value) > 0 and isinstance(value[0], dict):
                value = [d[key] if key in d else float('nan') for d in value]
            self.data[-1].extend(value)
        else:
            self.data[-1].append(value)
    if fac:
        for k in range(len(self.data[-1])):
            self.data[-1][k] *= fac
    self.addcol = len(self.data)
    self.__recompute_shape()
    return self

Append column to the table.

Parameters

label : str or list of str
Optional section titles and the name of the column.
unit : str or None
The unit of the column contents.
formats : str or None
The C-style format string used for printing out the column content, e.g. '%g', '%.2f', '%s', etc. If None, the format is set to '%g'.
description : str or None
The description of the column contents.
value : None, float, int, str, etc. or list thereof, or list of dict
If not None, data for the column. If list of dictionaries, extract from each dictionary in the list the value specified by key. If key is None use label as the key.
fac : float
If not None, multiply the data values by this number.
key : None or key of a dictionary
If not None and value is a list of dictionaries, extract from each dictionary in the list the value specified by key and assign the resulting list as data to the column.

Returns

self : TableData
This TableData
def insert(self,
column,
label,
unit=None,
formats=None,
description=None,
value=None,
fac=None,
key=None)
Expand source code
def insert(self, column, label, unit=None, formats=None, description=None,
           value=None, fac=None, key=None):
    """Insert a table column at a given position.

    .. WARNING::
       If no `value` is given, the inserted column is an empty list.

    Parameters
    ----------
    columns int or str
        Column before which to insert the new column.
        Column can be specified by index or name,
        see `index()` for details.
    label: str or list of str
        Optional section titles and the name of the column.
    unit: str or None
        The unit of the column contents.
    formats: str or None
        The C-style format string used for printing out the column content, e.g.
        '%g', '%.2f', '%s', etc.
        If None, the format is set to '%g'.
    description: str or None
        The description of the column contents.
    value: None, float, int, str, etc. or list thereof, or list of dict
        If not None, data for the column.
        If list of dictionaries, extract from each dictionary in the list
        the value specified by `key`. If `key` is `None` use `label` as
        the key.
    fac: float
        If not None, multiply the data values by this number.
    key: None or key of a dictionary
        If not None and `value` is a list of dictionaries,
        extract from each dictionary in the list the value specified
        by `key` and assign the resulting list as data to the column.

    Returns
    -------
    index: int
        The index of the inserted column.
        
    Raises
    ------
    self: TableData
        This TableData
    """
    col = self.index(column)
    if col is None:
        raise IndexError(f'Cannot insert before non-existing column "{column}"')
    if isinstance(label, (list, tuple, np.ndarray)):
        self.header.insert(col, list(reversed(label)))
    else:
        self.header.insert(col, [label])
    self.units.insert(col, unit or '')
    self.formats.insert(col, formats or '%g')
    self.descriptions.insert(col, description or '')
    self.hidden.insert(col, False)
    self.data.insert(col, [])
    if self.nsecs < len(self.header[col]) - 1:
        self.nsecs = len(self.header[col]) - 1
    if not key:
        key = label
    if value is not None:
        if isinstance(value, (list, tuple, np.ndarray)):
            if key and len(value) > 0 and isinstance(value[0], dict):
                value = [d[key] if key in d else float('nan') for d in value]
            self.data[col].extend(value)
        else:
            self.data[col].append(value)
    if fac:
        for k in range(len(self.data[col])):
            self.data[col][k] *= fac
    self.addcol = len(self.data)
    self.__recompute_shape()
    return self

Insert a table column at a given position.

Warning

If no value is given, the inserted column is an empty list.

Parameters

columns int or str
Column before which to insert the new column.
Column can be specified by index or name,
see index() for details.
label : str or list of str
Optional section titles and the name of the column.
unit : str or None
The unit of the column contents.
formats : str or None
The C-style format string used for printing out the column content, e.g. '%g', '%.2f', '%s', etc. If None, the format is set to '%g'.
description : str or None
The description of the column contents.
value : None, float, int, str, etc. or list thereof, or list of dict
If not None, data for the column. If list of dictionaries, extract from each dictionary in the list the value specified by key. If key is None use label as the key.
fac : float
If not None, multiply the data values by this number.
key : None or key of a dictionary
If not None and value is a list of dictionaries, extract from each dictionary in the list the value specified by key and assign the resulting list as data to the column.

Returns

index : int
The index of the inserted column.

Raises

self : TableData
This TableData
def remove(self, columns)
Expand source code
def remove(self, columns):
    """Remove columns from the table.

    Parameters
    -----------
    columns: int or str or list of int or str
        Columns can be specified by index or name,
        see `index()` for details.

    Raises
    ------
    IndexError:
        If an invalid column was specified.
    """
    # fix columns:
    if not isinstance(columns, (list, tuple, np.ndarray)):
        columns = [ columns ]
    if not columns:
        return
    # remove:
    for col in columns:
        c = self.index(col)
        if c is None:
            if isinstance(col, (np.integer, int)):
                col = '%d' % col
            raise IndexError('Cannot remove non-existing column ' + col)
            continue
        if c+1 < len(self.header):
            self.header[c+1].extend(self.header[c][len(self.header[c+1]):])
        del self.header[c]
        del self.units[c]
        del self.formats[c]
        del self.descriptions[c]
        del self.hidden[c]
        del self.data[c]
    if self.setcol >= len(self.data):
        self.setcol = 0
    self.__recompute_shape()

Remove columns from the table.

Parameters

columns : int or str or list of int or str
Columns can be specified by index or name, see index() for details.

Raises

Indexerror

If an invalid column was specified.

def section(self, column, level)
Expand source code
def section(self, column, level):
    """The section name of a specified column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    level: int
        The level of the section to be returned. The column label itself is level=0.

    Returns
    -------
    name: str
        The name of the section at the specified level containing
        the column.
    index: int
        The column index that contains this section
        (equal or smaller thant `column`).

    Raises
    ------
    IndexError:
        If `level` exceeds the maximum possible level.
    """
    if level < 0 or level > self.nsecs:
        raise IndexError('Invalid section level')
    column = self.index(column)
    while len(self.header[column]) <= level:
        column -= 1
    return self.header[column][level], column

The section name of a specified column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
level : int
The level of the section to be returned. The column label itself is level=0.

Returns

name : str
The name of the section at the specified level containing the column.
index : int
The column index that contains this section (equal or smaller thant column).

Raises

Indexerror

If level exceeds the maximum possible level.

def set_section(self, column, label, level)
Expand source code
def set_section(self, column, label, level):
    """Set a section name.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    label: str
        The new name to be used for the section.
    level: int
        The level of the section to be set. The column label itself is level=0.
    """
    column = self.index(column)
    self.header[column][level] = label
    return column

Set a section name.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
label : str
The new name to be used for the section.
level : int
The level of the section to be set. The column label itself is level=0.
def append_section(self, label)
Expand source code
def append_section(self, label):
    """Add sections to the table header.

    Each column of the table has a header label. Columns can be
    grouped into sections. Sections can be nested arbitrarily.

    Parameters
    ----------
    label: stri or list of str
        The name(s) of the section(s).

    Returns
    -------
    index: int
        The column index where the section was appended.
    """
    if self.addcol >= len(self.data):
        if isinstance(label, (list, tuple, np.ndarray)):
            self.header.append(list(reversed(label)))
        else:
            self.header.append([label])
        self.units.append('')
        self.formats.append('')
        self.descriptions.append('')
        self.hidden.append(False)
        self.data.append([])
    else:
        if isinstance(label, (list, tuple, np.ndarray)):
            self.header[self.addcol] = list(reversed(label)) + self.header[self.addcol]
        else:
            self.header[self.addcol] = [label] + self.header[self.addcol]
    if self.nsecs < len(self.header[self.addcol]):
        self.nsecs = len(self.header[self.addcol])
    self.addcol = len(self.data) - 1
    self.__recompute_shape()
    return self.addcol

Add sections to the table header.

Each column of the table has a header label. Columns can be grouped into sections. Sections can be nested arbitrarily.

Parameters

label : stri or list of str
The name(s) of the section(s).

Returns

index : int
The column index where the section was appended.
def insert_section(self, column, section)
Expand source code
def insert_section(self, column, section):
    """Insert a section at a given position of the table header.

    Parameters
    ----------
    columns int or str
        Column before which to insert the new section.
        Column can be specified by index or name,
        see `index()` for details.
    section: str
        The name of the section.

    Returns
    -------
    index: int
        The index of the column where the section was inserted.
        
    Raises
    ------
    IndexError:
        If an invalid column was specified.
    """
    col = self.index(column)
    if col is None:
        if isinstance(column, (np.integer, int)):
            column = '%d' % column
        raise IndexError('Cannot insert at non-existing column ' + column)
    self.header[col].append(section)
    if self.nsecs < len(self.header[col]) - 1:
        self.nsecs = len(self.header[col]) - 1
    return col

Insert a section at a given position of the table header.

Parameters

columns int or str
Column before which to insert the new section.
Column can be specified by index or name,
see index() for details.
section : str
The name of the section.

Returns

index : int
The index of the column where the section was inserted.

Raises

Indexerror

If an invalid column was specified.

def label(self, column)
Expand source code
def label(self, column):
    """The name of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    self: TableData
        This TableData
    """
    column = self.index(column)
    return self.header[column][0]

The name of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

self : TableData
This TableData
def set_label(self, column, label)
Expand source code
def set_label(self, column, label):
    """Set the name of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    label: str
        The new name to be used for the column.

    Returns
    -------
    self: TableData
        This TableData
    """        
    column = self.index(column)
    self.header[column][0] = label
    return self

Set the name of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
label : str
The new name to be used for the column.

Returns

self : TableData
This TableData
def set_labels(self, labels)
Expand source code
def set_labels(self, labels):
    """Set the labels of some columns.

    Parameters
    ----------
    labels: TableData, dict, list of str, list of list of str, None
        The new labels to be used.
        If TableData, take the labels of the respective column indices.
        If dict, keys are column labels (see self.index() for more
        information on how to specify a column), and values are
        the new labels for the respective columns as str or list of str.
        If list of str or list of list of str,
        set labels of the first successive columns to the list elements.
        If `None`, do nothing.

    Returns
    -------
    self: TableData
        This TableData
    """
    if isinstance(labels, TableData):
        for c in range(min(self.columns(), labels.columns())):
            self.header[c] = labels.header[c]
    elif isinstance(labels, dict):
        for c in labels:
            i = self.index(c)
            if i is None:
                continue
            l = labels[c]
            if isinstance(l, (list, tuple)):
                self.header[i] = l
            else:
                self.header[i] = [l]
    elif isinstance(labels, (list, tuple, np.ndarray)) and not \
         (isinstance(labels, np.ndarray) and len(labels.shape) == 0):
        for c, l in enumerate(labels):
            if isinstance(l, (list, tuple)):
                self.labels[c] = l
            else:
                self.labels[c] = [l]
    return self

Set the labels of some columns.

Parameters

labels : TableData, dict, list of str, list of list of str, None
The new labels to be used. If TableData, take the labels of the respective column indices. If dict, keys are column labels (see self.index() for more information on how to specify a column), and values are the new labels for the respective columns as str or list of str. If list of str or list of list of str, set labels of the first successive columns to the list elements. If None, do nothing.

Returns

self : TableData
This TableData
def unit(self, column)
Expand source code
def unit(self, column):
    """The unit of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    unit: str
        The unit.
    """
    column = self.index(column)
    return self.units[column]

The unit of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

unit : str
The unit.
def set_unit(self, column, unit)
Expand source code
def set_unit(self, column, unit):
    """Set the unit of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    unit: str
        The new unit to be used for the column.

    Returns
    -------
    self: TableData
        This TableData
    """
    column = self.index(column)
    self.units[column] = unit
    return self

Set the unit of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
unit : str
The new unit to be used for the column.

Returns

self : TableData
This TableData
def set_units(self, units)
Expand source code
def set_units(self, units):
    """Set the units of some columns.

    Parameters
    ----------
    units: TableData, dict, list of str, str, None
        The new units to be used.
        If TableData, take the units of matching column labels.
        If dict, keys are column labels (see self.index() for more
        information on how to specify a column), and values are
        units for the respective columns as str.
        If list of str, set units of the first successive columns to
        the list elements.
        If `None`, do nothing.
        Otherwise, set units of all columns to `units`.

    Returns
    -------
    self: TableData
        This TableData
    """
    if isinstance(units, TableData):
        for c in units:
            i = self.index(c)
            if i is None:
                continue
            self.units[i] = units.unit(c)
    elif isinstance(units, dict):
        for c in units:
            i = self.index(c)
            if i is None:
                continue
            self.units[i] = units[c]
    elif isinstance(units, (list, tuple, np.ndarray)) and not \
         (isinstance(units, np.ndarray) and len(units.shape) == 0):
        for c, u in enumerate(units):
            self.units[c] = u
    elif units is not None:
        for c in range(len(self.units)):
            self.units[c] = units
    return self

Set the units of some columns.

Parameters

units : TableData, dict, list of str, str, None
The new units to be used. If TableData, take the units of matching column labels. If dict, keys are column labels (see self.index() for more information on how to specify a column), and values are units for the respective columns as str. If list of str, set units of the first successive columns to the list elements. If None, do nothing. Otherwise, set units of all columns to units.

Returns

self : TableData
This TableData
def format(self, column)
Expand source code
def format(self, column):
    """The format string of the column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    format: str
        The format string.
    """
    column = self.index(column)
    return self.formats[column]

The format string of the column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

format : str
The format string.
def set_format(self, column, format)
Expand source code
def set_format(self, column, format):
    """Set the format string of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    format: str
        The new format string to be used for the column.

    Returns
    -------
    self: TableData
        This TableData
    """
    column = self.index(column)
    self.formats[column] = format
    return self

Set the format string of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
format : str
The new format string to be used for the column.

Returns

self : TableData
This TableData
def set_formats(self, formats)
Expand source code
def set_formats(self, formats):
    """Set the format strings of all columns.

    Parameters
    ----------
    formats: TableData, dict, list of str, str, None
        The new format strings to be used.
        If TableData, take the format strings of matching column labels.
        If dict, keys are column labels (see self.index() for more
        information on how to specify a column), and values are
        format strings for the respective columns as str.
        If list of str, set format strings of the first successive
        columns to the list elements.
        If `None`, do nothing.
        Otherwise, set format strings of all columns to `formats`.

    Returns
    -------
    self: TableData
        This TableData
    """
    if isinstance(formats, TableData):
        for c in formats:
            i = self.index(c)
            if i is None:
                continue
            self.formats[i] = formats.format(c)
    elif isinstance(formats, dict):
        for c in formats:
            i = self.index(c)
            if i is None:
                continue
            self.formats[i] = formats[c] or '%g'
    elif isinstance(formats, (list, tuple, np.ndarray)) and not \
         (isinstance(formats, np.ndarray) and len(formats.shape) == 0):
        for c, f in enumerate(formats):
            self.formats[c] = f or '%g'
    elif formats is not None:
        for c in range(len(self.formats)):
            self.formats[c] = formats or '%g'
    return self

Set the format strings of all columns.

Parameters

formats : TableData, dict, list of str, str, None
The new format strings to be used. If TableData, take the format strings of matching column labels. If dict, keys are column labels (see self.index() for more information on how to specify a column), and values are format strings for the respective columns as str. If list of str, set format strings of the first successive columns to the list elements. If None, do nothing. Otherwise, set format strings of all columns to formats.

Returns

self : TableData
This TableData
def description(self, column)
Expand source code
def description(self, column):
    """The description of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    description: str
        The description.
    """
    column = self.index(column)
    return self.descriptions[column]

The description of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

description : str
The description.
def set_description(self, column, description)
Expand source code
def set_description(self, column, description):
    """Set the description of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    description: str
        The new description to be used for the column.

    Returns
    -------
    self: TableData
        This TableData
    """
    column = self.index(column)
    self.descriptions[column] = description
    return self

Set the description of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
description : str
The new description to be used for the column.

Returns

self : TableData
This TableData
def set_descriptions(self, descriptions)
Expand source code
def set_descriptions(self, descriptions):
    """Set the descriptions of some columns.

    Parameters
    ----------
    descriptions: TableData, dict, list of str, str, None
        The new descriptions to be used.
        If TableData, take the descriptions of matching column labels.
        If dict, keys are column labels (see self.index() for more
        information on how to specify a column), and values are
        descriptions for the respective columns as str.
        If list of str, set descriptions of the first successive columns to
        the list elements.
        If `None`, do nothing.

    Returns
    -------
    self: TableData
        This TableData
    """
    if isinstance(descriptions, TableData):
        for c in descriptions:
            i = self.index(c)
            if i is None:
                continue
            self.descriptions[i] = descriptions.description(c)
    elif isinstance(descriptions, dict):
        for c in descriptions:
            i = self.index(c)
            if i is None:
                continue
            self.descriptions[i] = descriptions[c]
    elif isinstance(descriptions, (list, tuple, np.ndarray)) and not \
         (isinstance(descriptions, np.ndarray) and len(descriptions.shape) == 0):
        for c, d in enumerate(descriptions):
            self.descriptions[c] = d
    return self

Set the descriptions of some columns.

Parameters

descriptions : TableData, dict, list of str, str, None
The new descriptions to be used. If TableData, take the descriptions of matching column labels. If dict, keys are column labels (see self.index() for more information on how to specify a column), and values are descriptions for the respective columns as str. If list of str, set descriptions of the first successive columns to the list elements. If None, do nothing.

Returns

self : TableData
This TableData
def table_header(self)
Expand source code
def table_header(self):
    """The header of the table without content.

    Returns
    -------
    data: TableData
        A TableData object with the same header but empty data.
    """
    data = TableData()
    sec_indices = [-1] * self.nsecs
    for c in range(self.columns()):
        data.append(*self.column_head(c))
        for l in range(self.nsecs):
            s, i = self.section(c, l+1)
            if i != sec_indices[l]:
                data.header[-1].append(s)
                sec_indices[l] = i
    data.nsecs = self.nsecs
    return data

The header of the table without content.

Returns

data : TableData
A TableData object with the same header but empty data.
def column_head(self, column, secs=False)
Expand source code
def column_head(self, column, secs=False):
    """The name, unit, format, and description of a column.

    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    secs: bool
        If True, return all section names in addition to the column label.

    Returns
    -------
    name: str or list of str
        The column label or the label with all its sections.
    unit: str
        The unit.
    format: str
        The format string.
    description: str
        The description of the data column.
    """
    column = self.index(column)
    if secs:
        header = self.header[column]
        c = column - 1
        while len(header) < self.nsecs + 1 and c >= 0:
            if len(self.header[c]) > len(header):
                header.extend(self.header[c][len(header):])
            c -= 1
        return list(reversed(header)), self.units[column], self.formats[column], self.descriptions[column]
    else:
        return self.header[column][0], self.units[column], self.formats[column], self.descriptions[column]

The name, unit, format, and description of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
secs : bool
If True, return all section names in addition to the column label.

Returns

name : str or list of str
The column label or the label with all its sections.
unit : str
The unit.
format : str
The format string.
description : str
The description of the data column.
def column_spec(self, column)
Expand source code
def column_spec(self, column):
    """Full specification of a column with all its section names.

    Parameters
    ----------
    column: int or str
        Specifies the column.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    s: str
        Full specification of the column by all its section names and its header label.
    """
    c = self.index(column)
    fh = [self.header[c][0]]
    for l in range(self.nsecs):
        fh.append(self.section(c, l+1)[0])
    return '>'.join(reversed(fh))

Full specification of a column with all its section names.

Parameters

column : int or str
Specifies the column. See self.index() for more information on how to specify a column.

Returns

s : str
Full specification of the column by all its section names and its header label.
def find_col(self, column)
Expand source code
def find_col(self, column):
    """Find the start and end index of a column specification.
    
    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    c0: int or None
        A valid column index or None that is specified by `column`.
    c1: int or None
        A valid column index or None of the column following the range specified
        by `column`.
    """

    def find_column_indices(ss, si, minns, maxns, c0, strict=True):
        if si >= len(ss):
            return None, None, None, None
        ns0 = 0
        for ns in range(minns, maxns+1):
            nsec = maxns - ns
            if ss[si] == '':
                si += 1
                continue
            for c in range(c0, len(self.header)):
                if nsec < len(self.header[c]) and \
                    ((strict and self.header[c][nsec] == ss[si]) or
                     (not strict and ss[si] in self.header[c][nsec])):
                    ns0 = ns
                    c0 = c
                    si += 1
                    if si >= len(ss):
                        c1 = len(self.header)
                        for c in range(c0+1, len(self.header)):
                            if nsec < len(self.header[c]):
                                c1 = c
                                break
                        return c0, c1, ns0, None
                    elif nsec > 0:
                        break
        return None, c0, ns0, si

    if column is None:
        return None, None
    if not isinstance(column, (np.integer, int)) and column.isdigit():
        column = int(column)
    if isinstance(column, (np.integer, int)):
        if column >= 0 and column < len(self.header):
            return column, column + 1
        else:
            return None, None
    # find column by header:
    ss = column.rstrip('>').split('>')
    maxns = self.nsecs
    si0 = 0
    while si0 < len(ss) and ss[si0] == '':
        maxns -= 1
        si0 += 1
    if maxns < 0:
        maxns = 0
    c0, c1, ns, si = find_column_indices(ss, si0, 0, maxns, 0, True)
    if c0 is None and c1 is not None:
        c0, c1, ns, si = find_column_indices(ss, si, ns, maxns, c1, False)
    return c0, c1

Find the start and end index of a column specification.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

c0 : int or None
A valid column index or None that is specified by column.
c1 : int or None
A valid column index or None of the column following the range specified by column.
def index(self, column)
Expand source code
def index(self, column):
    """The column index of a column specifier.
    
    Parameters
    ----------
    column: None, int, or str
        A specification of a column.
        - None: no column is specified
        - int: the index of the column (first column is zero), e.g. `index(2)`.
        - a string representing an integer is converted into the column index,
          e.g. `index('2')`
        - a string specifying a column by its header.
          Header names of descending hierarchy are separated by '>'.

    Returns
    -------
    index: int or None
        A valid column index or None.
    """
    c0, c1 = self.find_col(column)
    return c0

The column index of a column specifier.

Parameters

column : None, int, or str
A specification of a column. - None: no column is specified - int: the index of the column (first column is zero), e.g. index(2). - a string representing an integer is converted into the column index, e.g. index('2') - a string specifying a column by its header. Header names of descending hierarchy are separated by '>'.

Returns

index : int or None
A valid column index or None.
def __contains__(self, column)
Expand source code
def __contains__(self, column):
    """Check for existence of a column.

    Parameters
    ----------
    column: None, int, or str
        The column to be checked.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    contains: bool
        True if `column` specifies an existing column key.
    """
    return self.index(column) is not None

Check for existence of a column.

Parameters

column : None, int, or str
The column to be checked. See self.index() for more information on how to specify a column.

Returns

contains : bool
True if column specifies an existing column key.
def keys(self)
Expand source code
def keys(self):
    """List of unique column keys for all available columns.

    Returns
    -------
    keys: list of str
        List of unique column specifications.
    """
    return [self.column_spec(c) for c in range(self.columns())]

List of unique column keys for all available columns.

Returns

keys : list of str
List of unique column specifications.
def values(self)
Expand source code
def values(self):
    """List of column data corresponding to keys(). Same as `self.data`.

    Returns
    -------
    data: list of list of values
        The data of the table. First index is columns!
    """
    return self.data

List of column data corresponding to keys(). Same as self.data.

Returns

data : list of list of values
The data of the table. First index is columns!
def items(self)
Expand source code
def items(self):
    """Generator over column names and corresponding data.

    Yields
    ------
    item: tuple
        Unique column specifications and the corresponding data.
    """
    for c in range(self.columns()):
        yield self.column_spec(c), self.data[c]

Generator over column names and corresponding data.

Yields

item : tuple
Unique column specifications and the corresponding data.
def __len__(self)
Expand source code
def __len__(self):
    """The number of rows.
    
    Returns
    -------
    rows: int
        The number of rows contained in the table.
    """
    return self.rows()

The number of rows.

Returns

rows : int
The number of rows contained in the table.
def __iter__(self)
Expand source code
def __iter__(self):
    """Initialize iteration over data columns.
    """
    self.iter_counter = -1
    return self

Initialize iteration over data columns.

def __next__(self)
Expand source code
def __next__(self):
    """Next unique column key.

    Returns
    -------
    s: str
        Full specification of the column by all its section names and its header label.
    """
    self.iter_counter += 1
    if self.iter_counter >= self.columns():
        raise StopIteration
    else:
        return self.column_spec(self.iter_counter)

Next unique column key.

Returns

s : str
Full specification of the column by all its section names and its header label.
def rows(self)
Expand source code
def rows(self):
    """The number of rows.
    
    Returns
    -------
    rows: int
        The number of rows contained in the table.
    """
    return max(map(len, self.data)) if self.data else 0

The number of rows.

Returns

rows : int
The number of rows contained in the table.
def columns(self)
Expand source code
def columns(self):
    """The number of columns.
    
    Returns
    -------
    columns: int
        The number of columns contained in the table.
    """
    return len(self.header)

The number of columns.

Returns

columns : int
The number of columns contained in the table.
def row(self, index)
Expand source code
def row(self, index):
    """A single row of the table as TableData.

    Parameters
    ----------
    index: int
        The index of the row to be returned.

    Returns
    -------
    data: TableData
        A TableData object with a single row.
    """
    data = TableData()
    sec_indices = [-1] * self.nsecs
    for c in range(self.columns()):
        data.append(*self.column_head(c))
        for l in range(self.nsecs):
            s, i = self.section(c, l+1)
            if i != sec_indices[l]:
                data.header[-1].append(s)
                sec_indices[l] = i
        data.data[-1] = [self.data[c][index]]
    data.nsecs = self.nsecs
    return data

A single row of the table as TableData.

Parameters

index : int
The index of the row to be returned.

Returns

data : TableData
A TableData object with a single row.
def row_list(self, index)
Expand source code
def row_list(self, index):
    """A single row of the table as list.

    Parameters
    ----------
    index: int
        The index of the row to be returned.

    Returns
    -------
    data: list
        A list with data values of each column of row `index`.
    """
    data = []
    for c in range(self.columns()):
        data.append(self.data[c][index])
    return data

A single row of the table as list.

Parameters

index : int
The index of the row to be returned.

Returns

data : list
A list with data values of each column of row index.
def row_data(self)
Expand source code
def row_data(self):
    """A generator for iterating over rows of the table.

    Yields
    ------
    data: list
        A list with data values of each column.
    """
    for r in range(self.rows()):
        yield self.row_list(r)

A generator for iterating over rows of the table.

Yields

data : list
A list with data values of each column.
def row_dict(self, index)
Expand source code
def row_dict(self, index):
    """A single row of the table as dictionary.

    Parameters
    ----------
    index: int
        The index of the row to be returned.

    Returns
    -------
    data: dict
        A dictionary with column header as key and corresponding data value of row `index`
        as value.
    """
    data = {}
    for c in range(self.columns()):
        data[self.column_spec(c)] = self.data[c][index]
    return data

A single row of the table as dictionary.

Parameters

index : int
The index of the row to be returned.

Returns

data : dict
A dictionary with column header as key and corresponding data value of row index as value.
def column(self, col)
Expand source code
def column(self, col):
    """A single column of the table.

    Parameters
    ----------
    col: None, int, or str
        The column to be returned.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    table: TableData
        A TableData object with a single column.
    """
    data = TableData()
    c = self.index(col)
    data.append(*self.column_head(c))
    data.data = [self.data[c]]
    data.nsecs = 0
    return data

A single column of the table.

Parameters

col : None, int, or str
The column to be returned. See self.index() for more information on how to specify a column.

Returns

table : TableData
A TableData object with a single column.
def __call__(self, column)
Expand source code
def __call__(self, column):
    """A single column of the table as a ndarray.

    Parameters
    ----------
    column: None, int, or str
        The column to be returned.
        See self.index() for more information on how to specify a column.

    Returns
    -------
    data: 1-D ndarray
        Content of the specified column as a ndarray.
    """
    c = self.index(column)
    return np.asarray(self.data[c])

A single column of the table as a ndarray.

Parameters

column : None, int, or str
The column to be returned. See self.index() for more information on how to specify a column.

Returns

data : 1-D ndarray
Content of the specified column as a ndarray.
def __getitem__(self, key)
Expand source code
def __getitem__(self, key):
    """Data elements specified by slice.

    Parameters
    -----------
    key:
        First key specifies row, (optional) second key the column.
        Columns can be specified by index or name,
        see `index()` for details.
        A single key of strings selects columns by their names: `td[:, 'col'] == td['col']`
        If a stop column is specified by name,
        it is inclusively!

    Returns
    -------
    data:
        - A single data value if a single row and a single column is specified.
        - A ndarray of data elements if a single column is specified.
        - A TableData object for multiple columns.
        - None if no row is selected (e.g. by a logical index that nowhere is True)

    Raises
    ------
    IndexError:
        If an invalid column was specified.
    """
    rows, cols = self.__setupkey(key)
    if len(cols) == 1:
        if cols[0] >= self.columns():
            return None
        if rows is None:
            return None
        elif isinstance(rows, slice):
            return np.asarray(self.data[cols[0]][rows])
        elif isinstance(rows, (list, tuple, np.ndarray)):
            return np.asarray([self.data[cols[0]][r] for r in rows if r < len(self.data[cols[0]])])
        elif rows < len(self.data[cols[0]]):
            return self.data[cols[0]][rows]
        else:
            return None
    else:
        data = TableData()
        sec_indices = [-1] * self.nsecs
        for c in cols:
            data.append(*self.column_head(c, secs=True))
            if rows is None:
                continue
            if isinstance(rows, (list, tuple, np.ndarray)):
                for r in rows:
                    data.data[-1].append(self.data[c][r])
            else:
                try:
                    if isinstance(self.data[c][rows],
                                  (list, tuple, np.ndarray)):
                        data.data[-1].extend(self.data[c][rows])
                    else:
                        data.data[-1].append(self.data[c][rows])
                except IndexError:
                    data.data[-1].append(np.nan)
        data.nsecs = self.nsecs
        return data

Data elements specified by slice.

Parameters

key: First key specifies row, (optional) second key the column. Columns can be specified by index or name, see index() for details. A single key of strings selects columns by their names: td[:, 'col'] == td['col'] If a stop column is specified by name, it is inclusively!

Returns

data:
  • A single data value if a single row and a single column is specified.
  • A ndarray of data elements if a single column is specified.
  • A TableData object for multiple columns.
  • None if no row is selected (e.g. by a logical index that nowhere is True)

Raises

Indexerror

If an invalid column was specified.

def __setitem__(self, key, value)
Expand source code
def __setitem__(self, key, value):
    """Assign values to data elements specified by slice.

    Parameters
    -----------
    key:
        First key specifies row, (optional) second one the column.
        Columns can be specified by index or name,
        see `index()` for details.
        A single key of strings selects columns by their names: `td[:, 'col'] == td['col']`
        If a stop column is specified by name,
        it is inclusively!
    value: TableData, list, ndarray, float, ...
        Value(s) used to assing to the table elements as specified by `key`.

    Raises
    ------
    IndexError:
        If an invalid column was specified.
    """
    rows, cols = self.__setupkey(key)
    if rows is None:
        return
    if isinstance(value, TableData):
        if isinstance(self.data[cols[0]][rows], (list, tuple, np.ndarray)):
            for k, c in enumerate(cols):
                self.data[c][rows] = value.data[k]
        else:
            for k, c in enumerate(cols):
                self.data[c][rows] = value.data[k][0]
    else:
        if len(cols) == 1:
            if isinstance(rows, (list, tuple, np.ndarray)):
                if len(rows) == 1:
                    self.data[cols[0]][rows[0]] = value
                elif isinstance(value, (list, tuple, np.ndarray)):
                    for k, r in enumerate(rows):
                        self.data[cols[0]][r] = value[k]
                else:
                    for r in rows:
                        self.data[cols[0]][r] = value
            elif isinstance(value, (list, tuple, np.ndarray)):
                self.data[cols[0]][rows] = value
            elif isinstance(rows, (np.integer, int)):
                self.data[cols[0]][rows] = value
            else:
                n = len(self.data[cols[0]][rows])
                if n > 1:
                    self.data[cols[0]][rows] = [value]*n
                else:
                    self.data[cols[0]][rows] = value
        else:
            if isinstance(self.data[0][rows], (list, tuple, np.ndarray)):
                for k, c in enumerate(cols):
                    self.data[c][rows] = value[:,k]
            elif isinstance(value, (list, tuple, np.ndarray)):
                for k, c in enumerate(cols):
                    self.data[c][rows] = value[k]
            else:
                for k, c in enumerate(cols):
                    self.data[c][rows] = value

Assign values to data elements specified by slice.

Parameters

key: First key specifies row, (optional) second one the column. Columns can be specified by index or name, see index() for details. A single key of strings selects columns by their names: td[:, 'col'] == td['col'] If a stop column is specified by name, it is inclusively! value: TableData, list, ndarray, float, … Value(s) used to assing to the table elements as specified by key.

Raises

Indexerror

If an invalid column was specified.

def __delitem__(self, key)
Expand source code
def __delitem__(self, key):
    """Delete data elements or whole columns or rows.

    Parameters
    -----------
    key:
        First key specifies row, (optional) second one the column.
        Columns can be specified by index or name,
        see `index()` for details.
        A single key of strings selects columns by their names: `td[:, 'col'] == td['col']`
        If a stop column is specified by name,
        it is inclusively!
        If all rows are selected, then the specified columns are removed from the table.
        Otherwise only data values are removed.
        If all columns are selected than entire rows of data values are removed.
        Otherwise only data values in the specified rows are removed.

    Raises
    ------
    IndexError:
        If an invalid column was specified.
    """
    rows, cols = self.__setupkey(key)
    if rows is None:
        return
    row_indices = np.arange(self.rows(), dtype=int)[rows]
    if isinstance(row_indices, np.ndarray):
        if len(row_indices) == self.rows():
            # delete whole columns:
            self.remove(cols)
        elif len(row_indices) > 0:
            for r in reversed(sorted(row_indices)):
                for c in cols:
                    if r < len(self.data[c]):
                        del self.data[c][r]
        self.__recompute_shape()
    else:
        for c in cols:
            del self.data[c][row_indices]
        self.__recompute_shape()

Delete data elements or whole columns or rows.

Parameters

key: First key specifies row, (optional) second one the column. Columns can be specified by index or name, see index() for details. A single key of strings selects columns by their names: td[:, 'col'] == td['col'] If a stop column is specified by name, it is inclusively! If all rows are selected, then the specified columns are removed from the table. Otherwise only data values are removed. If all columns are selected than entire rows of data values are removed. Otherwise only data values in the specified rows are removed.

Raises

Indexerror

If an invalid column was specified.

def array(self, row=None)
Expand source code
def array(self, row=None):
    """The table data as a ndarray.

    Parameters
    ----------
    row: int or None
        If specified, a 1D ndarray of that row will be returned.

    Returns
    -------
    data: 2D or 1D ndarray
        If no row is specified, the data content of the entire table
        as a 2D ndarray (rows first).
        If a row is specified, a 1D ndarray of that row.
    """
    if row is None:
        return np.array(self.data).T
    else:
        return np.array([d[row] for d in self.data])

The table data as a ndarray.

Parameters

row : int or None
If specified, a 1D ndarray of that row will be returned.

Returns

data : 2D or 1D ndarray
If no row is specified, the data content of the entire table as a 2D ndarray (rows first). If a row is specified, a 1D ndarray of that row.
def data_frame(self)
Expand source code
def data_frame(self):
    """The table data as a pandas DataFrame.

    Returns
    -------
    data: pandas.DataFrame
        A pandas DataFrame of the whole table.
    """
    return pd.DataFrame(self.dict())

The table data as a pandas DataFrame.

Returns

data : pandas.DataFrame
A pandas DataFrame of the whole table.
def dicts(self, raw_values=True, missing='-')
Expand source code
def dicts(self, raw_values=True, missing=default_missing_str):
    """The table as a list of dictionaries.

    Parameters
    ----------
    raw_values: bool
        If True, use raw table values as values,
        else format the values and add unit string.
    missing: str
        String indicating non-existing data elements.

    Returns
    -------
    table: list of dict
        For each row of the table a dictionary with header as key.
    """
    table = []
    for row in range(self.rows()):
        data = {}
        for col in range(len(self.header)):
            if raw_values:
                v = self.data[col][row];
            else:
                if isinstance(self.data[col][row], (float, np.floating)) and m.isnan(self.data[col][row]):
                    v = missing
                else:
                    u = ''
                    if not self.units[col] in '1-' and self.units[col] != 'a.u.':
                        u = self.units[col]
                    v = (self.formats[col] % self.data[col][row]) + u
            data[self.header[col][0]] = v
        table.append(data)
    return table

The table as a list of dictionaries.

Parameters

raw_values : bool
If True, use raw table values as values, else format the values and add unit string.
missing : str
String indicating non-existing data elements.

Returns

table : list of dict
For each row of the table a dictionary with header as key.
def dict(self)
Expand source code
def dict(self):
    """The table as a dictionary.

    Returns
    -------
    table: dict
        A dictionary with keys being the column headers and
        values the list of data elements of the corresponding column.
    """
    table = {k: v for k, v in self.items()}
    return table

The table as a dictionary.

Returns

table : dict
A dictionary with keys being the column headers and values the list of data elements of the corresponding column.
def add(self, data, column=None, add_all=False)
Expand source code
def add(self, data, column=None, add_all=False):
    """Add data elements to successive columns.

    The current column is set behid the added columns.

    Parameters
    ----------
    data: float, int, str, etc. or list thereof or list of list thereof or dict or list of dict or TableData
        Data values to be appended to successive columns:
        - A single value is simply appended to the specified
          column of the table.
        - A 1D-list of values is appended to successive columns of the table
          starting with the specified column.
        - The columns (second index) of a 2D-list of values are
          appended to successive columns of the table starting
          with the specified column.
        - Values of a dictionary or of a list of dictionaries are
          added to the columns specified by the keys. Dictionary
          values can also be lists of values. Their values are
          added to successive rows of the columns specified by the
          dictionary keys. Does not affect the current column.
        - All elements of a TableData are added to matching columns.
          Does not affect the current column.
    column: None, int, or str
        The first column to which the data should be appended,
        if `data` does not specify columns.
        If None, append to the current column.
        See self.index() for more information on how to specify a column.
    add_all: bool
        If the data are given as dictionaries or TableData, then
        only data of columns that already exist in the table are
        added to the table. If the table is empty or `add_all` is
        set to `True` then all data is added and if necessary new
        columns are appended to the table.
    """
    if self.shape[1] == 0:
        add_all = True
    column = self.index(column)
    if column is None:
        column = self.setcol
    if isinstance(data, TableData):
        self._add_table_data(data, add_all)
    elif isinstance(data, (list, tuple, np.ndarray)) and not \
         (isinstance(data, np.ndarray) and len(data.shape) == 0):
        if len(data) > 0 and \
           isinstance(data[0], (list, tuple, np.ndarray)) and not \
           (isinstance(data[0], np.ndarray) and len(data[0].shape) == 0):
            # 2D list, rows first:
            for row in data:
                for i, val in enumerate(row):
                    self.data[column + i].append(val)
            self.setcol = column + len(data[0])
        elif len(data) > 0 and isinstance(data[0], dict):
            # list of dictionaries:
            for d in data:
                self._add_dict(d, add_all)
        else:
            # 1D list:
            for val in data:
                self.data[column].append(val)
                column += 1
            self.setcol = column
    elif isinstance(data, dict):
        # dictionary with values:
        self._add_dict(data, add_all)
    else:
        # single value:
        self.data[column].append(data)
        self.setcol = column + 1
    if self.setcol >= len(self.data):
        self.setcol = 0
    self.__recompute_shape()

Add data elements to successive columns.

The current column is set behid the added columns.

Parameters

data : float, int, str, etc. or list thereof or list of list thereof or dict or list of dict or TableData
Data values to be appended to successive columns: - A single value is simply appended to the specified column of the table. - A 1D-list of values is appended to successive columns of the table starting with the specified column. - The columns (second index) of a 2D-list of values are appended to successive columns of the table starting with the specified column. - Values of a dictionary or of a list of dictionaries are added to the columns specified by the keys. Dictionary values can also be lists of values. Their values are added to successive rows of the columns specified by the dictionary keys. Does not affect the current column. - All elements of a TableData are added to matching columns. Does not affect the current column.
column : None, int, or str
The first column to which the data should be appended, if data does not specify columns. If None, append to the current column. See self.index() for more information on how to specify a column.
add_all : bool
If the data are given as dictionaries or TableData, then only data of columns that already exist in the table are added to the table. If the table is empty or add_all is set to True then all data is added and if necessary new columns are appended to the table.
def append_data_column(self, data, column=None)
Expand source code
def append_data_column(self, data, column=None):
    """Append data elements to a column.

    The current column is incremented by one.

    Parameters
    ----------
    data: float, int, str, etc. or list thereof
        Data values to be appended to a column.
    column: None, int, or str
        The column to which the data should be appended.
        If None, append to the current column.
        See self.index() for more information on how to specify a column.
    """
    column = self.index(column)
    if column is None:
        column = self.setcol
    if isinstance(data, (list, tuple, np.ndarray)):
        self.data[column].extend(data)
        column += 1
        self.setcol = column
    else:
        self.data[column].append(data)
        self.setcol = column+1
    if self.setcol >= len(self.data):
        self.setcol = 0
    self.__recompute_shape()

Append data elements to a column.

The current column is incremented by one.

Parameters

data : float, int, str, etc. or list thereof
Data values to be appended to a column.
column : None, int, or str
The column to which the data should be appended. If None, append to the current column. See self.index() for more information on how to specify a column.
def set_column(self, column)
Expand source code
def set_column(self, column):
    """Set the column where to add data.

    Parameters
    ----------
    column: int or str
        The column to which data elements should be appended.
        See self.index() for more information on how to specify a column.

    Raises
    ------
    IndexError:
        If an invalid column was specified.
    """
    col = self.index(column)
    if col is None:
        if isinstance(column, (np.integer, int)):
            column = '%d' % column
        raise IndexError('column ' + column + ' not found or invalid')
    self.setcol = col
    return col

Set the column where to add data.

Parameters

column : int or str
The column to which data elements should be appended. See self.index() for more information on how to specify a column.

Raises

Indexerror

If an invalid column was specified.

def fill_data(self)
Expand source code
def fill_data(self):
    """Fill up all columns with missing data to have the same number of
    data elements.
    """
    # maximum rows:
    maxr = self.rows()
    # fill up:
    for c in range(len(self.data)):
        while len(self.data[c]) < maxr:
            self.data[c].append(np.nan)
    self.setcol = 0
    self.__recompute_shape()

Fill up all columns with missing data to have the same number of data elements.

def clear_data(self)
Expand source code
def clear_data(self):
    """Clear content of the table but keep header.
    """
    for c in range(len(self.data)):
        self.data[c] = []
    self.setcol = 0
    self.__recompute_shape()

Clear content of the table but keep header.

def clear(self)
Expand source code
def clear(self):
    """Clear the table of any content and header information.
    """
    self.ndim = 2
    self.size = 0
    self.shape = (0, 0)
    self.nsecs = 0
    self.header = []
    self.units = []
    self.formats = []
    self.descriptions = []
    self.data = []
    self.hidden = []
    self.setcol = 0
    self.addcol = 0

Clear the table of any content and header information.

def sort(self, columns, reverse=False)
Expand source code
def sort(self, columns, reverse=False):
    """Sort the table rows in place.

    Parameters
    ----------
    columns: int or str or list of int or str
        A column specifier or a list of column specifiers of the columns
        to be sorted.
    reverse: boolean
        If `True` sort in descending order.

    Raises
    ------
    IndexError:
        If an invalid column was specified.
    """
    # fix columns:
    if not isinstance(columns, (list, tuple, np.ndarray)):
        columns = [ columns ]
    if not columns:
        return
    cols = []
    for col in columns:
        c = self.index(col)
        if c is None:
            if isinstance(col, (np.integer, int)):
                col = '%d' % col
            raise IndexError('sort column ' + col + ' not found')
            continue
        cols.append(c)
    # get sorted row indices:
    row_inx = range(self.rows())
    row_inx = sorted(row_inx, key=lambda x : [float('-inf') if self.data[c][x] is np.nan \
                     or self.data[c][x] != self.data[c][x] \
                     else self.data[c][x] for c in cols], reverse=reverse)
    # sort table according to indices:
    for c in range(self.columns()):
        self.data[c] = [self.data[c][r] for r in row_inx]

Sort the table rows in place.

Parameters

columns : int or str or list of int or str
A column specifier or a list of column specifiers of the columns to be sorted.
reverse : boolean
If True sort in descending order.

Raises

Indexerror

If an invalid column was specified.

def key_value(self, row, col, missing='-')
Expand source code
def key_value(self, row, col, missing=default_missing_str):
    """A data element returned as a key-value pair.

    Parameters
    ----------
    row: int
        Specifies the row from which the data element should be retrieved.
    col: None, int, or str
        A specification of a column.
        See self.index() for more information on how to specify a column.
    missing: str
        String indicating non-existing data elements.

    Returns
    -------
    key: str
        Header label of the column
    value: str
        A textual representation of the data element according to the format
        of the column, followed by the unit of the column.
    """
    col = self.index(col)
    if col is None:
        return ''
    if isinstance(self.data[col][row], (float, np.floating)) and m.isnan(self.data[col][row]):
        v = missing
    else:
        u = ''
        if not self.units[col] in '1-' and self.units[col] != 'a.u.':
            u = self.units[col]
        v = (self.formats[col] % self.data[col][row]) + u
    return self.header[col][0], v

A data element returned as a key-value pair.

Parameters

row : int
Specifies the row from which the data element should be retrieved.
col : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
missing : str
String indicating non-existing data elements.

Returns

key : str
Header label of the column
value : str
A textual representation of the data element according to the format of the column, followed by the unit of the column.
def aggregate(self,
funcs,
columns=None,
label=None,
numbers_only=False,
remove_nans=False,
single_row=False,
by=None)
Expand source code
def aggregate(self, funcs, columns=None, label=None,
              numbers_only=False, remove_nans=False,
              single_row=False, by=None):
    """Apply functions to columns.

    Parameter
    ---------
    funcs: function, list of function, dict
        Functions that are applied to columns of the table.
        - a single function that is applied to the `columns`.
          The results are named according to the function's `__name__`.
        - a list or tuple of functions.
          The results are named according to the functions' `__name__`.
        - a dictionary. The results are named after the provided keys,
          the functions are given by the values.
          If the function returns more than one value, then the
          corresponding key in the dictionary needs to be a tuple
          (not a list!) of names for each of the returned values.
        Functions in lists or dictionaries can be just a plain
        function, like `max` or `np.mean`. In case a function
        needs further arguments, then you need to supply a tuple
        with the first elements being the function, the second
        element being another tuple holding positional arguments,
        and an optional third argument holding a dictionary for
        key-word arguments.
    columns: None, int or str or list of int or str
        Columns of the table on which functions are applied.
        If None apply functions on all columns.
    label: str or list of str
        Column label and optional section names of the first
        column with the function labels (if `single_row` is `False`).
    numbers_only: bool
        If True, skip columns that do not contain numbers.
    remove_nans: bool
        If True, remove nans before passing column values to function.
    single_row: bool
        If False, add for each function a row to the table.
        If True, add function values in a single row.
    by: None, int or str or list of int or str
        Group the table by the specified columns and apply the functions
        to each resulting sub-table separately.

    Returns
    -------
    dest: TableData
        A new table with the column headers specified by `columns`.
        A first column is inserted with the function labels
        (if not `single_row`).
        The functions are applied to all columns specified by `columns`
        and their return values are written into the new table.
    """
    if by is not None:
        # aggregate on grouped table:
        if not isinstance(by, (list, tuple)):
            by = [by]
        if len(by) > 0:
            gd = TableData()
            for name, values in self.groupby(*by):
                ad = values._aggregate(funcs, columns, label,
                                       numbers_only=numbers_only,
                                       remove_nans=remove_nans,
                                       single_row=True, keep_columns=by)
                gd.add(ad)
            return gd
    # aggregate on whole table:
    return self._aggregate(funcs, columns, label,
                           numbers_only=numbers_only,
                           remove_nans=remove_nans,
                           single_row=single_row,
                           keep_columns=None)

Apply functions to columns.

Parameter

funcs: function, list of function, dict Functions that are applied to columns of the table. - a single function that is applied to the columns. The results are named according to the function's __name__. - a list or tuple of functions. The results are named according to the functions' __name__. - a dictionary. The results are named after the provided keys, the functions are given by the values. If the function returns more than one value, then the corresponding key in the dictionary needs to be a tuple (not a list!) of names for each of the returned values. Functions in lists or dictionaries can be just a plain function, like max or np.mean. In case a function needs further arguments, then you need to supply a tuple with the first elements being the function, the second element being another tuple holding positional arguments, and an optional third argument holding a dictionary for key-word arguments. columns: None, int or str or list of int or str Columns of the table on which functions are applied. If None apply functions on all columns. label: str or list of str Column label and optional section names of the first column with the function labels (if single_row is False). numbers_only: bool If True, skip columns that do not contain numbers. remove_nans: bool If True, remove nans before passing column values to function. single_row: bool If False, add for each function a row to the table. If True, add function values in a single row. by: None, int or str or list of int or str Group the table by the specified columns and apply the functions to each resulting sub-table separately.

Returns

dest : TableData
A new table with the column headers specified by columns. A first column is inserted with the function labels (if not single_row). The functions are applied to all columns specified by columns and their return values are written into the new table.
def statistics(self, columns=None, label=None, remove_nans=False, single_row=False, by=None)
Expand source code
def statistics(self, columns=None, label=None,
               remove_nans=False, single_row=False, by=None):
    """Descriptive statistics of each column.
    
    Parameter
    ---------
    columns: None, int or str or list of int or str
        Columns of the table on which statistics should be computed.
        If None apply functions on all columns.
    label: str or list of str
        Column label and optional section names of the first
        column with the function labels (if `single_row` is `False`).
    remove_nans: bool
        If True, remove nans before passing column values to function.
    single_row: bool
        If False, add for each function a row to the table.
        If True, add function values in a single row.
    by: None, int or str or list of int or str
        Group the table by the specified columns and compute statistics
        to each resulting sub-table separately.

    Returns
    -------
    dest: TableData
        A new table with the column headers specified by `columns`.
        For each column that contains numbers some basic
        descriptive statistics is computed.
    """
    if label is None:
        label = 'statistics'
    funcs = {'mean': np.mean,
             'std': np.std,
             'min': np.min,
             ('quartile1', 'median', 'quartile2'):
                 (np.quantile, ([0.25, 0.5, 0.75],)),
             'max': np.max,
             'count': len}
    ds = self.aggregate(funcs, columns, label,
                        numbers_only=True,
                        remove_nans=remove_nans,
                        single_row=single_row, by=by)
    if by is not None:
        if not isinstance(by, (list, tuple)):
            by = [by]
        if len(by) > 0:
            single_row = True
    c0 = 0
    if not single_row:
        ds.set_format(0, '%-10s')
        c0 = 1
    for c in range(c0, ds.shape[1]):
        f = ds.formats[c]
        if single_row and ds.label(c) == 'count':
            ds.set_unit(c, '')
            ds.set_format(c, '%d')
        elif f[-1] in 'fge':
            i0 = f.find('.')
            if i0 > 0:
                p = int(f[i0 + 1:-1])
                f = f'{f[:i0 + 1]}{p + 1}{f[-1]}'
            ds.set_format(c, f)
        else:
            ds.set_format(c, '%.1f')
    return ds

Descriptive statistics of each column.

Parameter

columns: None, int or str or list of int or str Columns of the table on which statistics should be computed. If None apply functions on all columns. label: str or list of str Column label and optional section names of the first column with the function labels (if single_row is False). remove_nans: bool If True, remove nans before passing column values to function. single_row: bool If False, add for each function a row to the table. If True, add function values in a single row. by: None, int or str or list of int or str Group the table by the specified columns and compute statistics to each resulting sub-table separately.

Returns

dest : TableData
A new table with the column headers specified by columns. For each column that contains numbers some basic descriptive statistics is computed.
def groupby(self, *columns)
Expand source code
def groupby(self, *columns):
    """ Iterate through unique values of a column.

    Parameter
    ---------
    columns: int or str
        One or several columns used to group the data.
        See self.index() for more information on how to specify a column.

    Yields
    ------
    values: float or str or tuple of float or str
        The values of the specified columns.
    data: TableData
        The sub table where the specified columns equals `values`.
    """
    # check column indices and values:
    cols = []
    vals = []
    for col in columns:
        c = self.index(col)
        if c is None:
            raise StopIteration
        cols.append(c)
        vals.append(np.unique(self.data[c]))
    for values in product(*vals):
        mask = np.ones(len(self), dtype=bool)
        for c, v in zip(cols, values):
            mask &= self[:, c] == v
        if len(cols) == 1:
            yield values[0], self[mask]
        else:
            yield values, self[mask]

Iterate through unique values of a column.

Parameter

columns: int or str One or several columns used to group the data. See self.index() for more information on how to specify a column.

Yields

values : float or str or tuple of float or str
The values of the specified columns.
data : TableData
The sub table where the specified columns equals values.
def hide(self, column)
Expand source code
def hide(self, column):
    """Hide a column or a range of columns.

    Hidden columns will not be printed out by the write() function.

    Parameters
    ----------
    column: int or str
        The column to be hidden.
        See self.index() for more information on how to specify a column.
    """
    c0, c1 = self.find_col(column)
    if c0 is not None:
        for c in range(c0, c1):
            self.hidden[c] = True

Hide a column or a range of columns.

Hidden columns will not be printed out by the write() function.

Parameters

column : int or str
The column to be hidden. See self.index() for more information on how to specify a column.
def hide_all(self)
Expand source code
def hide_all(self):
    """Hide all columns.

    Hidden columns will not be printed out by the write() function.
    """
    for c in range(len(self.hidden)):
        self.hidden[c] = True

Hide all columns.

Hidden columns will not be printed out by the write() function.

def hide_empty_columns(self, missing=['na', 'NA', 'nan', 'NAN', '-'])
Expand source code
def hide_empty_columns(self, missing=default_missing_inputs):
    """Hide all columns that do not contain data.

    Hidden columns will not be printed out by the write() function.

    Parameters
    ----------
    missing: list of str
        Strings indicating missing data.
    """
    for c in range(len(self.data)):
        # check for empty column:
        isempty = True
        for v in self.data[c]:
            if isinstance(v, (float, np.floating)):
                if not m.isnan(v):
                    isempty = False
                    break
            else:
                if not v in missing:
                    isempty = False
                    break
        if isempty:
            self.hidden[c] = True

Hide all columns that do not contain data.

Hidden columns will not be printed out by the write() function.

Parameters

missing : list of str
Strings indicating missing data.
def show(self, column)
Expand source code
def show(self, column):
    """Show a column or a range of columns.

    Undoes hiding of a column.

    Parameters
    ----------
    column: int or str
        The column to be shown.
        See self.index() for more information on how to specify a column.
    """
    c0, c1 = self.find_col(column)
    if c0 is not None:
        for c in range(c0, c1):
            self.hidden[c] = False

Show a column or a range of columns.

Undoes hiding of a column.

Parameters

column : int or str
The column to be shown. See self.index() for more information on how to specify a column.
def write(self,
fh=sys.stdout,
table_format=None,
delimiter=None,
unit_style=None,
column_numbers=None,
sections=None,
align_columns=None,
shrink_width=True,
missing='-',
center_columns=False,
latex_unit_package=None,
latex_label_command='',
latex_merge_std=False,
descriptions_name='-description',
section_headings=None,
maxc=80)
Expand source code
def write(self, fh=sys.stdout, table_format=None, delimiter=None,
          unit_style=None, column_numbers=None, sections=None,
          align_columns=None, shrink_width=True,
          missing=default_missing_str, center_columns=False,
          latex_unit_package=None, latex_label_command='',
          latex_merge_std=False, descriptions_name='-description',
          section_headings=None, maxc=80):
    """Write the table to a file or stream.

    Parameters
    ----------
    fh: filename or stream
        If not a stream, the file with path `fh` is opened.
        If `fh` does not have an extension,
        the `table_format` is appended as an extension.
        Otherwise `fh` is used as a stream for writing.
    table_format: None or str
        The format to be used for output.
        One of 'out', 'dat', 'ascii', 'csv', 'rtai', 'md', 'tex', 'html'.
        If None or 'auto' then the format is set to the extension of the
        filename given by `fh`. If the filename does not have an extension
        `fh` is set to 'csv'. if `fh` is a stream the format is set
        to 'out'.
    delimiter: str
        String or character separating columns, if supported by the
        `table_format`.
        If None or 'auto' use the default for the specified `table_format`.
    unit_style: None or str
        - None or 'auto': use default of the specified `table_format`.
        - 'row': write an extra row to the table header specifying the
          units of the columns.
        - 'header': add the units to the column headers.
        - 'none': do not specify the units.
    column_numbers: str or None
        Add a row specifying the column index:
        - 'index': indices are integers, first column is 0.
        - 'num': indices are integers, first column is 1.
        - 'aa': use 'a', 'b', 'c', ..., 'z', 'aa', 'ab', ... for indexing
        - 'aa': use 'A', 'B', 'C', ..., 'Z', 'AA', 'AB', ... for indexing
        - None or 'none': do not add a row with column indices
        TableData.column_numbering is a list with the supported styles.
    sections: None or int
        Number of section levels to be printed.
        If `None` or 'auto' use default of selected `table_format`.
    align_columns: boolean
        - `True`: set width of column formats to make them align.
        - `False`: set width of column formats to 0 - no unnecessary spaces.
        - None or 'auto': Use default of the selected `table_format`.
    shrink_width: boolean
        If `True` disregard width specified by the format strings,
        such that columns can become narrower.
    missing: str
        Indicate missing data by this string.
    center_columns: boolean
        If True center all columns (markdown, html, and latex).
    latex_unit_package: None or 'siunitx' or 'SIunit'
        Translate units for the specified LaTeX package.
        If None set sub- and superscripts in text mode.
        If 'siunitx', also use `S` columns for numbers to align
        them on the decimal point.
    latex_label_command: str
        LaTeX command for formatting header labels.
        E.g. 'textbf' for making the header labels bold.
    latex_merge_std: str
        Merge header of columns with standard deviations with
        previous column (LaTeX tables only), but separate them
        with $\\pm$. Valid labels for standrad deviations are
        listed in `TableData.stdev_labels`.
    descriptions_name: None or str
        If not None and if `fh` is a file path, then write the column
        descriptions to a file with the same name as `fh`, but with
        `descriptions_name` appended.
    section_headings: None or int
        How to write treat header sections in the column descriptions.
        If set, set header sections as headings with the top-level
        section at the level as specified. 0 is the top level.
        If False, just produce a nested list.
    maxc: int
        Maximum character count for each line in the column descriptions.
    
    Returns
    -------
    file_name: Path or None
        The full name of the file into which the data were written.

    Supported file formats
    ----------------------
    
    ## `dat`: data text file
    ``` plain
    # info           reaction     
    # size   weight  delay  jitter
    # m      kg      ms     mm    
       2.34     123   98.7      23
      56.70    3457   54.3      45
       8.90      43   67.9     345
    ```

    ## `ascii`: ascii-art table
    ``` plain
    |---------------------------------|
    | info           | reaction       |
    | size  | weight | delay | jitter |
    | m     | kg     | ms    | mm     |
    |-------|--------|-------|--------|
    |  2.34 |    123 |  98.7 |     23 |
    | 56.70 |   3457 |  54.3 |     45 |
    |  8.90 |     43 |  67.9 |    345 |
    |---------------------------------|
    ```

    ## `csv`: comma separated values
    ``` plain
    size/m,weight/kg,delay/ms,jitter/mm
    2.34,123,98.7,23
    56.70,3457,54.3,45
    8.90,43,67.9,345
    ```

    ## `rtai`: rtai-style table
    ``` plain
    RTH| info         | reaction     
    RTH| size | weight| delay| jitter
    RTH| m    | kg    | ms   | mm    
    RTD|  2.34|    123|  98.7|     23
    RTD| 56.70|   3457|  54.3|     45
    RTD|  8.90|     43|  67.9|    345
    ```

    ## `md`: markdown
    ``` plain
    | size/m | weight/kg | delay/ms | jitter/mm |
    |------:|-------:|------:|-------:|
    |  2.34 |    123 |  98.7 |     23 |
    | 56.70 |   3457 |  54.3 |     45 |
    |  8.90 |     43 |  67.9 |    345 |
    ```

    ## `tex`: latex tabular
    ``` tex
    \\begin{tabular}{rrrr}
      \\hline
      \\multicolumn{2}{l}{info} & \\multicolumn{2}{l}{reaction} \\
      \\multicolumn{1}{l}{size} & \\multicolumn{1}{l}{weight} & \\multicolumn{1}{l}{delay} & \\multicolumn{1}{l}{jitter} \\
      \\multicolumn{1}{l}{m} & \\multicolumn{1}{l}{kg} & \\multicolumn{1}{l}{ms} & \\multicolumn{1}{l}{mm} \\
      \\hline
      2.34 & 123 & 98.7 & 23 \\
      56.70 & 3457 & 54.3 & 45 \\
      8.90 & 43 & 67.9 & 345 \\
      \\hline
    \\end{tabular}
    ```

    ## `html`: html
    ``` html
    <table>
    <thead>
      <tr class="header">
        <th align="left" colspan="2">info</th>
        <th align="left" colspan="2">reaction</th>
      </tr>
      <tr class="header">
        <th align="left">size</th>
        <th align="left">weight</th>
        <th align="left">delay</th>
        <th align="left">jitter</th>
      </tr>
      <tr class="header">
        <th align="left">m</th>
        <th align="left">kg</th>
        <th align="left">ms</th>
        <th align="left">mm</th>
      </tr>
    </thead>
    <tbody>
      <tr class"odd">
        <td align="right">2.34</td>
        <td align="right">123</td>
        <td align="right">98.7</td>
        <td align="right">23</td>
      </tr>
      <tr class"even">
        <td align="right">56.70</td>
        <td align="right">3457</td>
        <td align="right">54.3</td>
        <td align="right">45</td>
      </tr>
      <tr class"odd">
        <td align="right">8.90</td>
        <td align="right">43</td>
        <td align="right">67.9</td>
        <td align="right">345</td>
      </tr>
    </tbody>
    </table>
    ```

    """
    # fix parameter:
    if table_format is not None:
        table_format = table_format.lower()
    if table_format == 'auto':
        table_format = None
    if delimiter == 'auto':
        delimiter = None
    if unit_style == 'auto':
        unit_style = None
    if column_numbers == 'none':
        column_numbers = None
    if sections == 'auto':
        sections = None
    if align_columns == 'auto':
        align_columns = None
    # open file:
    own_file = False
    file_name = None
    if not hasattr(fh, 'write'):
        fh = Path(fh)
        ext = fh.suffix
        if table_format is None:
            if len(ext) > 1 and ext[1:] in self.ext_formats:
                table_format = self.ext_formats[ext[1:]]
            else:
                table_format = 'csv'
        if not ext or not ext[1:].lower() in self.ext_formats:
            fh = fh.with_suffix('.' + self.extensions[table_format])
        file_name = fh
        try:
            fh = open(os.fspath(fh), 'w')
        except AttributeError:
            fh = open(str(fh), 'w')
        own_file = True
    if table_format is None:
        table_format = 'out'
    # set style:        
    if table_format[0] == 'd':
        align_columns = True
        begin_str = ''
        end_str = ''
        header_start = '# '
        header_sep = '  '
        header_close = ''
        header_end = '\n'
        data_start = '  '
        data_sep = '  '
        data_close = ''
        data_end = '\n'
        top_line = False
        header_line = False
        bottom_line = False
        if delimiter is not None:
            header_sep = delimiter
            data_sep = delimiter
        if sections is None:
            sections = 1000
    elif table_format[0] == 'a':
        align_columns = True
        begin_str = ''
        end_str = ''
        header_start = '| '
        header_sep = ' | '
        header_close = ''
        header_end = ' |\n'
        data_start = '| '
        data_sep = ' | '
        data_close = ''
        data_end = ' |\n'
        top_line = True
        header_line = True
        bottom_line = True
        if delimiter is not None:
            header_sep = delimiter
            data_sep = delimiter
        if sections is None:
            sections = 1000
    elif table_format[0] == 'c':
        # csv according to http://www.ietf.org/rfc/rfc4180.txt :
        column_numbers=None
        if unit_style is None:
            unit_style = 'header'
        if align_columns is None:
            align_columns = False
        begin_str = ''
        end_str = ''
        header_start=''
        header_sep = ','
        header_close = ''
        header_end='\n'
        data_start=''
        data_sep = ','
        data_close = ''
        data_end='\n'
        top_line = False
        header_line = False
        bottom_line = False
        if delimiter is not None:
            header_sep = delimiter
            data_sep = delimiter
        if sections is None:
            sections = 0
    elif table_format[0] == 'r':
        align_columns = True
        begin_str = ''
        end_str = ''
        header_start = 'RTH| '
        header_sep = '| '
        header_close = ''
        header_end = '\n'
        data_start = 'RTD| '
        data_sep = '| '
        data_close = ''
        data_end = '\n'
        top_line = False
        header_line = False
        bottom_line = False
        if sections is None:
            sections = 1000
    elif table_format[0] == 'm':
        if unit_style is None or unit_style == 'row':
            unit_style = 'header'
        align_columns = True
        begin_str = ''
        end_str = ''
        header_start='| '
        header_sep = ' | '
        header_close = ''
        header_end=' |\n'
        data_start='| '
        data_sep = ' | '
        data_close = ''
        data_end=' |\n'
        top_line = False
        header_line = True
        bottom_line = False
        if sections is None:
            sections = 0
    elif table_format[0] == 'h':
        align_columns = False
        begin_str = '<table>\n<thead>\n'
        end_str = '</tbody>\n</table>\n'
        if center_columns:
            header_start='  <tr>\n    <th align="center"'
            header_sep = '</th>\n    <th align="center"'
        else:
            header_start='  <tr>\n    <th align="left"'
            header_sep = '</th>\n    <th align="left"'
        header_close = '>'
        header_end='</th>\n  </tr>\n'
        data_start='  <tr>\n    <td'
        data_sep = '</td>\n    <td'
        data_close = '>'
        data_end='</td>\n  </tr>\n'
        top_line = False
        header_line = False
        bottom_line = False
        if sections is None:
            sections = 1000
    elif table_format[0] == 't':
        if align_columns is None:
            align_columns = False
        begin_str = '\\begin{tabular}'
        end_str = '\\end{tabular}\n'
        header_start='  '
        header_sep = ' & '
        header_close = ''
        header_end=' \\\\\n'
        data_start='  '
        data_sep = ' & '
        data_close = ''
        data_end=' \\\\\n'
        top_line = True
        header_line = True
        bottom_line = True
        if sections is None:
            sections = 1000
    else:
        if align_columns is None:
            align_columns = True
        begin_str = ''
        end_str = ''
        header_start = ''
        header_sep = '  '
        header_close = ''
        header_end = '\n'
        data_start = ''
        data_sep = '  '
        data_close = ''
        data_end = '\n'
        top_line = False
        header_line = False
        bottom_line = False
        if sections is None:
            sections = 1000
    # check units:
    if unit_style is None:
        unit_style = 'row'
    have_units = False
    for u in self.units:
        if u and u != '1' and u != '-':
            have_units = True
            break
    if not have_units:
        unit_style = 'none'
    # find std columns:
    stdev_col = np.zeros(len(self.header), dtype=bool)
    for c in range(len(self.header) - 1):
        if self.header[c+1][0].lower() in self.stdev_labels and \
           not self.hidden[c+1]:
            stdev_col[c] = True
    # begin table:
    fh.write(begin_str)
    if table_format[0] == 't':
        fh.write('{')
        merged = False
        for h, f, s in zip(self.hidden, self.formats, stdev_col):
            if merged:
                fh.write('l')
                merged = False
                continue
            if h:
                continue
            if latex_merge_std and s:
                fh.write('r@{$\\,\\pm\\,$}')
                merged = True
            elif center_columns:
                fh.write('c')
            elif f[1] == '-':
                fh.write('l')
            else:
                if latex_unit_package is not None and \
                   latex_unit_package.lower() == 'siunitx':
                    fh.write('S')
                else:
                    fh.write('r')
        fh.write('}\n')
    # retrieve column formats and widths:
    widths = []       # width from format string
    widths_pos = []   # start and end index of width specifyer in format
    for c, f in enumerate(self.formats):
        w = 0
        # position of width specification:
        i0 = 1
        if len(f) > 1 and f[1] == '-' :
            i0 = 2
        i1 = f.find('.')
        if i1 < 0:
            i1 = i0
            while i1 < len(f) and f[i1].isdigit():
                i1 += 1
        if not shrink_width and i1 > i0:
            if f[i0:i1]:
                w = int(f[i0:i1])
        widths_pos.append((i0, i1))
        # adapt width to header label:
        hw = len(self.header[c][0])
        if unit_style == 'header' and self.units[c] and \
           self.units[c] != '1' and self.units[c] != '-':
            hw += 1 + len(self.units[c])
        if w < hw:
            w = hw
        # adapt width to data:
        if f[-1] == 's':
            for v in self.data[c]:
                if isinstance(v, str) and w < len(v):
                    w = len(v)
        else:
            fs = f'{f[:i0]}0{f[i1:]}'
            for v in self.data[c]:
                if v is None or (isinstance(v, (float, np.floating)) and
                                 m.isnan(v)):
                    s = missing
                else:
                    try:
                        s = fs % v
                    except ValueError:
                        s = missing
                    except TypeError:
                        s = str(v)
                if w < len(s):
                    w = len(s)
        widths.append(w)
    # adapt width to sections:
    sec_indices = [0] * self.nsecs  # previous column with this level
    sec_widths = [0] * self.nsecs   # total width of section level
    sec_columns = [0] * self.nsecs  # number of columns in section level
    for c in range(len(self.header)):
        w = widths[c]
        for l in range(min(self.nsecs, sections)):
            if 1 + l < len(self.header[c]):
                if c > 0 and sec_columns[l] > 0 and \
                   1 + l < len(self.header[sec_indices[l]]) and \
                   len(self.header[sec_indices[l]][1 + l]) > sec_widths[l]:
                    dw = len(self.header[sec_indices[l]][1 + l]) - sec_widths[l]
                    nc = sec_columns[l]
                    ddw = np.zeros(nc, dtype=int) + dw // nc
                    ddw[:dw % nc] += 1
                    wk = 0
                    for ck in range(sec_indices[l], c):
                        if not self.hidden[ck]:
                            widths[ck] += ddw[wk]
                            wk += 1
                sec_indices[l] = c
                sec_widths[l] = 0
                sec_columns[l] = 0
            if not self.hidden[c]:
                if sec_widths[l] > 0:
                    sec_widths[l] += len(header_sep)
                sec_widths[l] += w
                sec_columns[l] += 1
    # set width of format string:
    formats = []
    for c, (f, w) in enumerate(zip(self.formats, widths)):
        formats.append(f'{f[:widths_pos[c][0]]}{w}{f[widths_pos[c][1]:]}')
    # top line:
    if top_line:
        if table_format[0] == 't':
            fh.write('  \\hline \\\\[-2ex]\n')
        else:
            first = True
            fh.write(header_start.replace(' ', '-'))
            for c in range(len(self.header)):
                if self.hidden[c]:
                    continue
                if not first:
                    fh.write('-'*len(header_sep))
                first = False
                fh.write(header_close)
                w = widths[c]
                fh.write(w*'-')
            fh.write(header_end.replace(' ', '-'))
    # section and column headers:
    nsec0 = self.nsecs - sections
    if nsec0 < 0:
        nsec0 = 0
    for ns in range(nsec0, self.nsecs+1):
        nsec = self.nsecs - ns
        first = True
        last = False
        merged = False
        fh.write(header_start)
        for c in range(len(self.header)):
            if nsec < len(self.header[c]):
                # section width and column count:
                sw = -len(header_sep)
                columns = 0
                if not self.hidden[c]:
                    sw = widths[c]
                    columns = 1
                for k in range(c+1, len(self.header)):
                    if nsec < len(self.header[k]):
                        break
                    if self.hidden[k]:
                        continue
                    sw += len(header_sep) + widths[k]
                    columns += 1
                else:
                    last = True
                    if len(header_end.strip()) == 0:
                        sw = 0  # last entry needs no width
                if columns == 0:
                    continue
                if not first and not merged:
                    fh.write(header_sep)
                first = False
                if table_format[0] == 'c':
                    sw -= len(header_sep)*(columns - 1)
                elif table_format[0] == 'h':
                    if columns>1:
                        fh.write(' colspan="%d"' % columns)
                elif table_format[0] == 't':
                    if merged:
                        merged = False
                        continue
                    if latex_merge_std and nsec == 0 and stdev_col[c]:
                        merged = True
                        fh.write('\\multicolumn{%d}{c}{' % (columns+1))
                    elif center_columns:
                        fh.write('\\multicolumn{%d}{c}{' % columns)
                    else:
                        fh.write('\\multicolumn{%d}{l}{' % columns)
                    if latex_label_command:
                        fh.write('\\%s{' % latex_label_command)
                fh.write(header_close)
                hs = self.header[c][nsec]
                if nsec == 0 and unit_style == 'header':
                    if self.units[c] and self.units[c] != '1' and self.units[c] != '-':
                        hs += '/' + self.units[c]
                if align_columns and not table_format[0] in 'th':
                    f = '%%-%ds' % sw
                    fh.write(f % hs)
                else:
                    fh.write(hs)
                if table_format[0] == 'c':
                    if not last:
                        fh.write(header_sep*(columns - 1))
                elif table_format[0] == 't':
                    if latex_label_command:
                        fh.write('}')
                    fh.write('}')
        fh.write(header_end)
    # units:
    if unit_style == 'row':
        first = True
        merged = False
        fh.write(header_start)
        for c in range(len(self.header)):
            if self.hidden[c] or merged:
                merged = False
                continue
            if not first:
                fh.write(header_sep)
            first = False
            fh.write(header_close)
            unit = self.units[c]
            if not unit:
                unit = '-'
            if table_format[0] == 't':
                if latex_merge_std and stdev_col[c]:
                    merged = True
                    fh.write('\\multicolumn{2}{c}{%s}' % latex_unit(unit, latex_unit_package))
                elif center_columns:
                    fh.write('\\multicolumn{1}{c}{%s}' % latex_unit(unit, latex_unit_package))
                else:
                    fh.write('\\multicolumn{1}{l}{%s}' % latex_unit(unit, latex_unit_package))
            else:
                if align_columns and not table_format[0] in 'h':
                    f = '%%-%ds' % widths[c]
                    fh.write(f % unit)
                else:
                    fh.write(unit)
        fh.write(header_end)
    # column numbers:
    if column_numbers is not None:
        first = True
        fh.write(header_start)
        for c in range(len(self.header)):
            if self.hidden[c]:
                continue
            if not first:
                fh.write(header_sep)
            first = False
            fh.write(header_close)
            i = c
            if column_numbers == 'num':
                i = c+1
            aa = index2aa(c, 'a')
            if column_numbers == 'AA':
                aa = index2aa(c, 'A')
            if table_format[0] == 't':
                if column_numbers == 'num' or column_numbers == 'index':
                    fh.write('\\multicolumn{1}{l}{%d}' % i)
                else:
                    fh.write('\\multicolumn{1}{l}{%s}' % aa)
            else:
                if column_numbers == 'num' or column_numbers == 'index':
                    if align_columns:
                        f = '%%%dd' % widths[c]
                        fh.write(f % i)
                    else:
                        fh.write('%d' % i)
                else:
                    if align_columns:
                        f = '%%-%ds' % widths[c]
                        fh.write(f % aa)
                    else:
                        fh.write(aa)
        fh.write(header_end)
    # header line:
    if header_line:
        if table_format[0] == 'm':
            fh.write('|')
            for c in range(len(self.header)):
                if self.hidden[c]:
                    continue
                w = widths[c]+2
                if center_columns:
                    fh.write(':' + (w-2)*'-' + ':|')
                elif formats[c][1] == '-':
                    fh.write(w*'-' + '|')
                else:
                    fh.write((w - 1)*'-' + ':|')
            fh.write('\n')
        elif table_format[0] == 't':
            fh.write('  \\hline \\\\[-2ex]\n')
        else:
            first = True
            fh.write(header_start.replace(' ', '-'))
            for c in range(len(self.header)):
                if self.hidden[c]:
                    continue
                if not first:
                    fh.write(header_sep.replace(' ', '-'))
                first = False
                fh.write(header_close)
                w = widths[c]
                fh.write(w*'-')
            fh.write(header_end.replace(' ', '-'))
    # start table data:
    if table_format[0] == 'h':
        fh.write('</thead>\n<tbody>\n')
    # data:
    for k in range(self.rows()):
        first = True
        merged = False
        fh.write(data_start)
        for c, f in enumerate(formats):
            if self.hidden[c] or merged:
                merged = False
                continue
            if not first:
                fh.write(data_sep)
            first = False
            if table_format[0] == 'h':
                if center_columns:
                    fh.write(' align="center"')
                elif f[1] == '-':
                    fh.write(' align="left"')
                else:
                    fh.write(' align="right"')
            fh.write(data_close)
            if k >= len(self.data[c]) or self.data[c][k] is None or \
               (isinstance(self.data[c][k], (float, np.floating)) and m.isnan(self.data[c][k])):
                # missing data:
                if table_format[0] == 't' and latex_merge_std and stdev_col[c]:
                    merged = True
                    fh.write('\\multicolumn{2}{c}{%s}' % missing)
                elif align_columns:
                    if f[1] == '-':
                        fn = '%%-%ds' % widths[c]
                    else:
                        fn = '%%%ds' % widths[c]
                    fh.write(fn % missing)
                else:
                    fh.write(missing)
            else:
                # data value:
                try:
                    ds = f % self.data[c][k]
                except ValueError:
                    ds = missing
                except TypeError:
                    ds = str(self.data[c][k])
                if not align_columns:
                    ds = ds.strip()
                fh.write(ds)
        fh.write(data_end)
    # bottom line:
    if bottom_line:
        if table_format[0] == 't':
            fh.write('  \\hline\n')
        else:
            first = True
            fh.write(header_start.replace(' ', '-'))
            for c in range(len(self.header)):
                if self.hidden[c]:
                    continue
                if not first:
                    fh.write('-'*len(header_sep))
                first = False
                fh.write(header_close)
                w = widths[c]
                fh.write(w*'-')
            fh.write(header_end.replace(' ', '-'))
    # end table:
    fh.write(end_str)
    # close file:
    if own_file:
        fh.close()
    # write descriptions:
    if file_name is not None and descriptions_name:
        write_descriptions = False
        for c in range(len(self.descriptions)):
            if self.descriptions[c]:
                write_descriptions = True
        if write_descriptions:
            descr_path = file_name.with_name(file_name.stem +
                                             descriptions_name)
            if table_format[0] not in 'th': # neither tex nore html
                table_format = 'md'
            if len(descr_path.suffix) <= 1:
                descr_path = descr_path.with_suffix('.' + self.extensions[table_format])
            self.write_descriptions(descr_path, table_format=table_format,
                                    sections=sections,
                                    section_headings=section_headings,
                                    latex_unit_package=latex_unit_package,
                                    maxc=maxc)
    # return file name:
    return file_name

Write the table to a file or stream.

Parameters

fh : filename or stream
If not a stream, the file with path fh is opened. If fh does not have an extension, the table_format is appended as an extension. Otherwise fh is used as a stream for writing.
table_format : None or str
The format to be used for output. One of 'out', 'dat', 'ascii', 'csv', 'rtai', 'md', 'tex', 'html'. If None or 'auto' then the format is set to the extension of the filename given by fh. If the filename does not have an extension fh is set to 'csv'. if fh is a stream the format is set to 'out'.
delimiter : str
String or character separating columns, if supported by the table_format. If None or 'auto' use the default for the specified table_format.
unit_style : None or str
  • None or 'auto': use default of the specified table_format.
  • 'row': write an extra row to the table header specifying the units of the columns.
  • 'header': add the units to the column headers.
  • 'none': do not specify the units.
column_numbers : str or None
Add a row specifying the column index: - 'index': indices are integers, first column is 0. - 'num': indices are integers, first column is 1. - 'aa': use 'a', 'b', 'c', …, 'z', 'aa', 'ab', … for indexing - 'aa': use 'A', 'B', 'C', …, 'Z', 'AA', 'AB', … for indexing - None or 'none': do not add a row with column indices TableData.column_numbering is a list with the supported styles.
sections : None or int
Number of section levels to be printed. If None or 'auto' use default of selected table_format.
align_columns : boolean
  • True: set width of column formats to make them align.
  • False: set width of column formats to 0 - no unnecessary spaces.
  • None or 'auto': Use default of the selected table_format.
shrink_width : boolean
If True disregard width specified by the format strings, such that columns can become narrower.
missing : str
Indicate missing data by this string.
center_columns : boolean
If True center all columns (markdown, html, and latex).
latex_unit_package : None or 'siunitx' or 'SIunit'
Translate units for the specified LaTeX package. If None set sub- and superscripts in text mode. If 'siunitx', also use S columns for numbers to align them on the decimal point.
latex_label_command : str
LaTeX command for formatting header labels. E.g. 'textbf' for making the header labels bold.
latex_merge_std : str
Merge header of columns with standard deviations with previous column (LaTeX tables only), but separate them with $\pm$. Valid labels for standrad deviations are listed in TableData.stdev_labels.
descriptions_name : None or str
If not None and if fh is a file path, then write the column descriptions to a file with the same name as fh, but with descriptions_name appended.
section_headings : None or int
How to write treat header sections in the column descriptions. If set, set header sections as headings with the top-level section at the level as specified. 0 is the top level. If False, just produce a nested list.
maxc : int
Maximum character count for each line in the column descriptions.

Returns

file_name : Path or None
The full name of the file into which the data were written.

Supported File Formats

dat: data text file

# info           reaction     
# size   weight  delay  jitter
# m      kg      ms     mm    
   2.34     123   98.7      23
  56.70    3457   54.3      45
   8.90      43   67.9     345

ascii: ascii-art table

|---------------------------------|
| info           | reaction       |
| size  | weight | delay | jitter |
| m     | kg     | ms    | mm     |
|-------|--------|-------|--------|
|  2.34 |    123 |  98.7 |     23 |
| 56.70 |   3457 |  54.3 |     45 |
|  8.90 |     43 |  67.9 |    345 |
|---------------------------------|

csv: comma separated values

size/m,weight/kg,delay/ms,jitter/mm
2.34,123,98.7,23
56.70,3457,54.3,45
8.90,43,67.9,345

rtai: rtai-style table

RTH| info         | reaction     
RTH| size | weight| delay| jitter
RTH| m    | kg    | ms   | mm    
RTD|  2.34|    123|  98.7|     23
RTD| 56.70|   3457|  54.3|     45
RTD|  8.90|     43|  67.9|    345

md: markdown

| size/m | weight/kg | delay/ms | jitter/mm |
|------:|-------:|------:|-------:|
|  2.34 |    123 |  98.7 |     23 |
| 56.70 |   3457 |  54.3 |     45 |
|  8.90 |     43 |  67.9 |    345 |

tex: latex tabular

\begin{tabular}{rrrr}
  \hline
  \multicolumn{2}{l}{info} & \multicolumn{2}{l}{reaction} \
  \multicolumn{1}{l}{size} & \multicolumn{1}{l}{weight} & \multicolumn{1}{l}{delay} & \multicolumn{1}{l}{jitter} \
  \multicolumn{1}{l}{m} & \multicolumn{1}{l}{kg} & \multicolumn{1}{l}{ms} & \multicolumn{1}{l}{mm} \
  \hline
  2.34 & 123 & 98.7 & 23 \
  56.70 & 3457 & 54.3 & 45 \
  8.90 & 43 & 67.9 & 345 \
  \hline
\end{tabular}

html: html

<table>
<thead>
  <tr class="header">
    <th align="left" colspan="2">info</th>
    <th align="left" colspan="2">reaction</th>
  </tr>
  <tr class="header">
    <th align="left">size</th>
    <th align="left">weight</th>
    <th align="left">delay</th>
    <th align="left">jitter</th>
  </tr>
  <tr class="header">
    <th align="left">m</th>
    <th align="left">kg</th>
    <th align="left">ms</th>
    <th align="left">mm</th>
  </tr>
</thead>
<tbody>
  <tr class"odd">
    <td align="right">2.34</td>
    <td align="right">123</td>
    <td align="right">98.7</td>
    <td align="right">23</td>
  </tr>
  <tr class"even">
    <td align="right">56.70</td>
    <td align="right">3457</td>
    <td align="right">54.3</td>
    <td align="right">45</td>
  </tr>
  <tr class"odd">
    <td align="right">8.90</td>
    <td align="right">43</td>
    <td align="right">67.9</td>
    <td align="right">345</td>
  </tr>
</tbody>
</table>
def write_file_stream(self, base_name, file_name, **kwargs)
Expand source code
def write_file_stream(self, base_name, file_name, **kwargs):
    """Write table to file or stream and return appropriate file name.

    Parameters
    ----------
    base_name: str, Path, or stream
        If str, path and basename of file.
        `file_name` and an extension are appended.
        If stream, write table data into this stream.
    file_name: str
        Name of file that is appended to `base_name`.
    kwargs:
        Arguments passed on to `TableData.write()`.
        In particular, 'table_format' is used to set the file extension
        that is appended to the returned `file_name`.

    Returns
    -------
    file_name: Path
        Path and full name of the written file in case of `base_name`
        being a string. Otherwise, the file name and extension that
        should be appended to a base name.
    """
    if hasattr(base_name, 'write'):
        table_format = kwargs.get('table_format', None)
        if table_format is None or table_format == 'auto':
            table_format = 'csv'
        file_name = Path(file_name)
        file_name = file_name.with_suffix('.' + TableData.extensions[table_format])
        self.write(base_name, **kwargs)
        return file_name
    else:
        base_name = Path(base_name + file_name)
        file_name = self.write(base_name, **kwargs)
        return file_name

Write table to file or stream and return appropriate file name.

Parameters

base_name : str, Path, or stream
If str, path and basename of file. file_name and an extension are appended. If stream, write table data into this stream.
file_name : str
Name of file that is appended to base_name.

kwargs: Arguments passed on to TableData.write(). In particular, 'table_format' is used to set the file extension that is appended to the returned file_name.

Returns

file_name : Path
Path and full name of the written file in case of base_name being a string. Otherwise, the file name and extension that should be appended to a base name.
def __str__(self)
Expand source code
def __str__(self):
    """Write table to a string.
    """
    stream = StringIO()
    self.write(stream, table_format='out')
    return stream.getvalue()

Write table to a string.

def write_descriptions(self,
fh=sys.stdout,
table_format=None,
sections=None,
section_headings=None,
latex_unit_package=None,
maxc=80)
Expand source code
def write_descriptions(self, fh=sys.stdout, table_format=None,
                       sections=None, section_headings=None,
                       latex_unit_package=None, maxc=80):
    """Write column descriptions of the table to a file or stream.

    Parameters
    ----------
    fh: filename or stream
        If not a stream, the file with path `fh` is opened.
        If `fh` does not have an extension,
        the `table_format` is appended as an extension.
        Otherwise `fh` is used as a stream for writing.
    table_format: None or str
        The format to be used for output.
        One of 'md', 'tex', or 'html'.
        If None or 'auto' then the format is set to the extension
        of the filename given by `fh`.
        If `fh` is a stream the format is set to 'md'.
    sections: None or int
        Number of section levels to be printed.
        If `None` or 'auto' use default of selected `table_format`.
    section_headings: None or int
        If set, set header sections as headings with the top-level
        section at the level as specified. 0 is the top level.
        If False, just produce a nested list.
    latex_unit_package: None or 'siunitx' or 'SIunit'
        Translate units for the specified LaTeX package.
        If None set sub- and superscripts in text mode.
        If 'siunitx', also use `S` columns for numbers to align
        them on the decimal point.
    maxc: int
        Maximum character count for each line.
    """
    # fix parameter:
    if table_format == 'auto':
        table_format = None
    if sections is None:
        sections = 1000
    nsecs = min(self.nsecs, sections)
    # open file:
    own_file = False
    file_name = None
    if not hasattr(fh, 'write'):
        fh = Path(fh)
        ext = fh.suffix
        if table_format is None:
            if len(ext) > 1 and ext[1:] in self.ext_formats:
                table_format = self.ext_formats[ext[1:]]
        elif not ext or not ext[1:].lower() in self.ext_formats:
            fh = fh.with_suffix('.' + self.extensions[table_format])
        file_name = fh
        try:
            fh = open(os.fspath(fh), 'w')
        except AttributeError:
            fh = open(str(fh), 'w')
        own_file = True
    if table_format is None:
        table_format = 'md'
    # write descriptions:
    headers = ['']*(1 + nsecs)
    prev_headers = ['']*(1 + nsecs)
    if table_format == 'md':
        for c in range(len(self.header)):
            headers[:len(self.header[c])] = self.header[c]
            if not self.hidden[c]:
                changed = False
                for k in reversed(range(nsecs)):
                    if changed or prev_headers[k + 1] != headers[k + 1]:
                        changed = True
                        if section_headings is None:
                            fh.write(f'{" "*2*(nsecs - k - 1)}- '
                                     f'{headers[k + 1]}\n')
                        else:
                            level = nsecs - k - 1 + section_headings + 1
                            fh.write(f'\n{"#"*level} {headers[k + 1]}\n')
                        prev_headers[k + 1] = headers[k + 1]
                indent = 2*nsecs if section_headings is None else 0
                fh.write(f'{" "*indent}- **{headers[0]}**')
                if self.units[c]:
                    fh.write(f' [{self.units[c]}]')
                fh.write('  \n')
                break_text(fh, self.descriptions[c], maxc,
                           indent=indent + 2)
                prev_headers[0] = headers[0]
    elif table_format == 'html':
        level = -1
        for c in range(len(self.header)):
            headers[:len(self.header[c])] = self.header[c]
            if not self.hidden[c]:
                changed = False
                for k in reversed(range(nsecs)):
                    if changed or prev_headers[k + 1] != headers[k + 1]:
                        new_level = nsecs - k - 1
                        if not changed:
                            if section_headings is None:
                                while level > new_level:
                                    fh.write(f'{" "*2*level}</ul>\n')
                                    level -= 1
                            elif level >= 0:
                                fh.write(f'{" "*2*level}</ul>\n')
                                level -= 1
                        changed = True
                        if section_headings is None:
                            while level < new_level:
                                level += 1
                                fh.write(f'{" "*2*level}<ul>\n')
                            fh.write(f'{" "*2*(level + 1)}<li><b>{headers[k + 1]}</b></li>\n')
                        else:
                            fh.write(f'\n<h{new_level + section_headings + 1}>{headers[k + 1]}</h{new_level + section_headings + 1}>\n')
                        prev_headers[k + 1] = headers[k + 1]
                if changed:
                    level += 1
                    fh.write(f'{" "*2*level}<ul>\n')
                    
                fh.write(f'{" "*2*(level + 1)}<li><b>{headers[0]}</b>')
                if self.units[c]:
                    fh.write(f'[{self.units[c]}]')
                fh.write('<br>\n')
                break_text(fh, self.descriptions[c], maxc,
                           indent=2*(level + 1))
                fh.write(f'{" "*2*(level + 1)}</li>\n')
                prev_headers[0] = headers[0]
        while level >= 0:
            fh.write(f'{" "*2*level}</ul>\n')
            level -= 1
    elif table_format == 'tex':
        headings = [r'\section', r'\subsection', r'\subsubsection',
                    r'\paragraph', r'\subparagraph']
        level = -1
        for c in range(len(self.header)):
            headers[:len(self.header[c])] = self.header[c]
            if not self.hidden[c]:
                changed = False
                for k in reversed(range(nsecs)):
                    if changed or prev_headers[k + 1] != headers[k + 1]:
                        new_level = nsecs - k - 1
                        if not changed:
                            if section_headings is None:
                                while level > new_level:
                                    fh.write(f'{" "*2*level}\\end{{enumerate}}\n')
                                    level -= 1
                            elif level >= 0:
                                fh.write(f'{" "*2*level}\\end{{enumerate}}\n')
                                level -= 1
                        changed = True
                        if section_headings is None:
                            while level < new_level:
                                level += 1
                                fh.write(f'{" "*2*level}\\begin{{enumerate}}\n')
                            fh.write(f'{" "*2*(level + 1)}\\item \\textbf{{{headers[k + 1]}}}\n')
                        else:
                            fh.write(f'\n{headings[new_level + section_headings]}{{{headers[k + 1]}}}\n')
                        prev_headers[k + 1] = headers[k + 1]
                if changed:
                    level += 1
                    fh.write(f'{" "*2*level}\\begin{{enumerate}}\n')
                fh.write(f'{" "*2*(level + 1)}\\item \\textbf{{{headers[0]}}}')
                if self.units[c]:
                    fh.write(f' [{latex_unit(self.units[c], latex_unit_package)}]')
                fh.write('\n')
                break_text(fh, self.descriptions[c], maxc,
                           indent=2*(level + 1))
                prev_headers[0] = headers[0]
        while level >= 0:
            fh.write(f'{" "*2*level}\\end{{enumerate}}\n')
            level -= 1
    else:
        raise ValueError(f'File format "{table_format}" not supported for writing column descriptions')
    # close file:
    if own_file:
        fh.close()
    # return file name:
    return file_name

Write column descriptions of the table to a file or stream.

Parameters

fh : filename or stream
If not a stream, the file with path fh is opened. If fh does not have an extension, the table_format is appended as an extension. Otherwise fh is used as a stream for writing.
table_format : None or str
The format to be used for output. One of 'md', 'tex', or 'html'. If None or 'auto' then the format is set to the extension of the filename given by fh. If fh is a stream the format is set to 'md'.
sections : None or int
Number of section levels to be printed. If None or 'auto' use default of selected table_format.
section_headings : None or int
If set, set header sections as headings with the top-level section at the level as specified. 0 is the top level. If False, just produce a nested list.
latex_unit_package : None or 'siunitx' or 'SIunit'
Translate units for the specified LaTeX package. If None set sub- and superscripts in text mode. If 'siunitx', also use S columns for numbers to align them on the decimal point.
maxc : int
Maximum character count for each line.
def load_descriptions(fh)
Expand source code
def load_descriptions(fh):
    """Load column descriptions from file or stream.

    Parameters
    ----------
    fh: str, Path, or stream
        If not a stream, the file with path `fh` is opened for reading.
    """
    # open file:
    own_file = False
    if not hasattr(fh, 'readline'):
        try:
            fh = open(os.fspath(fh), 'r')
        except AttributeError:
            fh = open(str(fh), 'r')
        own_file = True
    # read file:
    print('WARNING: load_descriptions() not implemented yet')
    for line in fh:
        if line[0] == '#':
            heading_level = len(line.split()[0])
            section_name = line[heading_level + 1:]
        elif line[0] == '-':
            lp = line.split('**')
            label = lp[1]
            unit = lp[-1].strip().lstrip('[').rstrip(']')
    # close file:
    if own_file:
        fh.close()

Load column descriptions from file or stream.

Parameters

fh : str, Path, or stream
If not a stream, the file with path fh is opened for reading.
def load(self, fh, missing=['na', 'NA', 'nan', 'NAN', '-'], sep=None, stop=None)
Expand source code
def load(self, fh, missing=default_missing_inputs, sep=None, stop=None):
    """Load table from file or stream.

    File type and properties are automatically inferred.

    Parameters
    ----------
    fh: str, Path, or stream
        If not a stream, the file with path `fh` is opened for reading.
    missing: str or list of str
        Missing data are indicated by this string and
        are translated to np.nan.
    sep: str or None
        Column separator.
    stop: str or None
        If a line matches `stop`, stop reading the file.  `stop`
        can be an empty string to stop reading at the first empty
        line.

    Raises
    ------
    FileNotFoundError:
        If `fh` is a path that does not exist.

    """

    def read_key_line(line, sep, table_format):
        if sep is None:
            cols, indices = zip(*[(m.group(0), m.start()) for m in re.finditer(r'( ?[\S]+)+(?=[ ][ ]+|\Z)', line.strip())])
        elif table_format == 'csv':
            cols, indices = zip(*[(c.strip(), i) for i, c in enumerate(line.strip().split(sep)) if c.strip()])
        else:
            seps = r'[^'+re.escape(sep)+']+'
            cols, indices = zip(*[(m.group(0), m.start()) for m in re.finditer(seps, line.strip())])
        colss = []
        indicess = []
        if table_format == 'tex':
            i = 0
            for c in cols:
                if 'multicolumn' in c:
                    fields = c.split('{')
                    n = int(fields[1].strip().rstrip('}').rstrip())
                    colss.append(fields[3].strip().rstrip('}').rstrip())
                    indicess.append(i)
                    i += n
                else:
                    colss.append(c.strip())
                    indicess.append(i)
                    i += 1
        else:
            for k, (c, i) in enumerate(zip(cols, indices)):
                if table_format != 'csv':
                    if k == 0:
                        c = c.lstrip('|')
                    if k == len(cols) - 1:
                        c = c.rstrip('|')
                cs = c.strip()
                if len(cs) >= 2 and cs[0] == '"' and cs[-1] == '"':
                    cs = cs.strip('"')
                colss.append(cs)
                indicess.append(i)
        return colss, indicess

    def read_data_line(line, sep, post, precd, alld, numc, exped,
                       fixed, strf, missing, nans):
        # read line:
        cols = []
        if sep is None:
            cols = [m.group(0) for m in re.finditer(r'\S+', line.strip())]
        else:
            if sep.isspace():
                seps = r'[^'+re.escape(sep)+']+'
                cols = [m.group(0) for m in re.finditer(seps, line.strip())]
            else:
                cols = line.split(sep)
                if len(cols) > 0 and len(cols[0]) == 0:
                    cols = cols[1:]
                if len(cols) > 0 and len(cols[-1]) == 0:
                    cols = cols[:-1]
            if len(cols) > 0:
                cols[0] = cols[0].lstrip('|').lstrip()
                cols[-1] = cols[-1].rstrip('|').rstrip()
        cols = [c.strip() for c in cols if c != '|']
        # read columns:
        for k, c in enumerate(cols):
            try:
                v = float(c)
                ad = 0
                ve = c.split('e')
                if len(ve) <= 1:
                    exped[k] = False
                else:
                    ad = len(ve[1])+1
                vc = ve[0].split('.')
                ad += len(vc[0])
                prec = len(vc[0].lstrip('-').lstrip('+').lstrip('0')) 
                if len(vc) == 2:
                    if numc[k] and post[k] != len(vc[1]):
                        fixed[k] = False
                    if post[k] < len(vc[1]):
                        post[k] = len(vc[1])
                    ad += len(vc[1])+1
                    prec += len(vc[1].rstrip('0'))
                if precd[k] < prec:
                    precd[k] = prec
                if alld[k] < ad:
                    alld[k] = ad
                numc[k] = True
            except ValueError:
                if c in missing:
                    v = np.nan
                    nans[k] = c
                elif len(c) == 0 and not strf[k]:
                    v = np.nan
                else:
                    strf[k] = True
                    if alld[k] < len(c):
                        alld[k] = len(c)
                    if len(c) >= 2 and c[0] == '"' and c[-1] == '"':
                        v = c.strip('"')
                    else:
                        v = c
            self.add(v, k)
        self.fill_data()

    # initialize:
    if isinstance(missing, str):
        missing = [missing]
    self.data = []
    self.ndim = 2
    self.shape = (0, 0)
    self.header = []
    self.nsecs = 0
    self.units = []
    self.formats = []
    self.descriptions = []
    self.hidden = []
    self.setcol = 0
    self.addcol = 0
    # open file:
    own_file = False
    if not hasattr(fh, 'readline'):
        try:
            fh = open(os.fspath(fh), 'r')
        except AttributeError:
            fh = open(str(fh), 'r')
        own_file = True
    # read inital lines of file:
    key = []
    data = []
    target = data
    comment = False
    table_format='dat'        
    for line in fh:
        line = line.rstrip()
        if line == stop:
            break;
        if line:
            if r'\begin{tabular' in line:
                table_format='tex'
                target = key
                continue
            if table_format == 'tex':
                if r'\end{tabular' in line:
                    break
                if r'\hline' in line:
                    if key:
                        target = data
                    continue
                line = line.rstrip(r'\\')
            if line[0] == '#':
                comment = True
                table_format='dat'        
                target = key
                line = line.lstrip('#')
            elif comment:
                target = data
            if line[0:3] == 'RTH':
                target = key
                line = line[3:]
                table_format='rtai'
            elif line[0:3] == 'RTD':
                target = data
                line = line[3:]
                table_format='rtai'        
            if (line[0:3] == '|--' or line[0:3] == '|:-') and \
               (line[-3:] == '--|' or line[-3:] == '-:|'):
                if not data and not key:
                    table_format='ascii'
                    target = key
                    continue
                elif not key:
                    table_format='md'
                    key = data
                    data = []
                    target = data
                    continue
                elif not data:
                    target = data
                    continue
                else:
                    break
            target.append(line)
        else:
            break
        if len(data) > 5:
            break
    # find column separator of data and number of columns:
    col_seps = ['|', ',', ';', ':', '\t', '&', None]
    if sep is not None:
        col_seps = [sep]
    colstd = np.zeros(len(col_seps))
    colnum = np.zeros(len(col_seps), dtype=int)
    for k, sep in enumerate(col_seps):
        cols = []
        s = 5 if len(data) >= 8 else len(data) - 3
        if s < 0 or key:
            s = 0
        for line in data[s:]:
            cs = line.strip().split(sep)
            if not cs[0]:
                cs = cs[1:]
            if cs and not cs[-1]:
                cs = cs[:-1]
            cols.append(len(cs))
        colstd[k] = np.std(cols)
        colnum[k] = np.median(cols)
    if np.max(colnum) < 2:
        sep = None
        colnum = 1
    else:
        ci = np.where(np.array(colnum) > 1.5)[0]
        ci = ci[np.argmin(colstd[ci])]
        sep = col_seps[ci]
        colnum = int(colnum[ci])
    # fix key:
    if not key and sep is not None and sep in ',;:\t|':
        table_format = 'csv'
    # read key:
    key_cols = []
    key_indices = []
    for line in key:
        cols, indices = read_key_line(line, sep, table_format)
        key_cols.append(cols)
        key_indices.append(indices)
    if not key_cols:
        # no obviously marked table key:
        key_num = 0
        for line in data:
            cols, indices = read_key_line(line, sep, table_format)
            numbers = 0
            for c in cols:
                try:
                    v = float(c)
                    numbers += 1
                except ValueError:
                    break
            if numbers == 0:
                key_cols.append(cols)
                key_indices.append(indices)
                key_num += 1
            else:
                break
        if len(key_cols) == len(data):
            key_num = 1
            key_cols = key_cols[:1]
            key_indices = key_indices[:1]
            colnum = len(key_cols[0])
        data = data[key_num:]
    kr = len(key_cols) - 1
    # check for key with column indices:
    if kr >= 0:
        cols = key_cols[kr]
        numrow = True
        try:
            pv = int(cols[0])
            for c in cols[1:]:
                v = int(c)
                if v != pv+1:
                    numrow = False
                    break
                pv = v
        except ValueError:
            try:
                pv = aa2index(cols[0])
                for c in cols[1:]:
                    v = aa2index(c)
                    if v != pv+1:
                        numrow = False
                        break
                    pv = v
            except ValueError:
                numrow = False
        if numrow:
            kr -= 1
    # check for unit line:
    units = None
    if kr > 0 and len(key_cols[kr]) == len(key_cols[kr - 1]):
        units = key_cols[kr]
        kr -= 1
    # column labels:
    if kr >= 0:
        if units is None:
            # units may be part of the label:
            labels = []
            units = []
            for c in key_cols[kr]:
                if c[-1] == ')':
                    lu = c[:-1].split('(')
                    if len(lu) >= 2:
                        labels.append(lu[0].strip())
                        units.append('('.join(lu[1:]).strip())
                        continue
                lu = c.split('/')
                if len(lu) >= 2:
                    labels.append(lu[0].strip())
                    units.append('/'.join(lu[1:]).strip())
                else:
                    labels.append(c)
                    units.append('')
        else:
            labels = key_cols[kr]
        indices = key_indices[kr]
        # init table columns:
        for k in range(colnum):
            self.append(labels[k], units[k], '%g')
    # read in sections:
    while kr > 0:
        kr -= 1
        for sec_label, sec_inx in zip(key_cols[kr], key_indices[kr]):
            col_inx = indices.index(sec_inx)
            self.header[col_inx].append(sec_label)
            if self.nsecs < len(self.header[col_inx]) - 1:
                self.nsecs = len(self.header[col_inx]) - 1
    # read data:
    post = np.zeros(colnum, dtype=int)
    precd = np.zeros(colnum, dtype=int)
    alld = np.zeros(colnum, dtype=int)
    numc = [False] * colnum
    exped = [True] * colnum
    fixed = [True] * colnum
    strf = [False] * colnum
    nans = [None] * colnum   # for each column the missing string that was encountered.
    for line in data:
        read_data_line(line, sep, post, precd, alld, numc, exped, fixed,
                       strf, missing, nans)
    # read remaining data:
    for line in fh:
        line = line.rstrip()
        if line == stop:
            break;
        if table_format == 'tex':
            if r'\end{tabular' in line or r'\hline' in line:
                break
            line = line.rstrip(r'\\')
        if (line[0:3] == '|--' or line[0:3] == '|:-') and \
            (line[-3:] == '--|' or line[-3:] == '-:|'):
            break
        if line[0:3] == 'RTD':
            line = line[3:]
        read_data_line(line, sep, post, precd, alld, numc, exped, fixed,
                       strf, missing, nans)
    # set formats:
    for k in range(len(alld)):
        if strf[k]:
            self.set_format(k, '%%-%ds' % alld[k])
            # make sure all elements are strings:
            for i in range(len(self.data[k])):
                if self.data[k][i] is np.nan:
                    self.data[k][i] = nans[k]
                else:
                    self.data[k][i] = str(self.data[k][i])
        elif exped[k]:
            self.set_format(k, '%%%d.%de' % (alld[k], post[k]))
        elif fixed[k]:
            self.set_format(k, '%%%d.%df' % (alld[k], post[k]))
        else:
            self.set_format(k, '%%%d.%dg' % (alld[k], precd[k]))
    # close file:
    if own_file:
        fh.close()

Load table from file or stream.

File type and properties are automatically inferred.

Parameters

fh : str, Path, or stream
If not a stream, the file with path fh is opened for reading.
missing : str or list of str
Missing data are indicated by this string and are translated to np.nan.
sep : str or None
Column separator.
stop : str or None
If a line matches stop, stop reading the file. stop can be an empty string to stop reading at the first empty line.

Raises

Filenotfounderror

If fh is a path that does not exist.

class IndentStream (stream, indent=4)
Expand source code
class IndentStream(object):
    """Filter an output stream and start each newline with a number of
    spaces.
    """
    def __init__(self, stream, indent=4):
        self.stream = stream
        self.indent = indent
        self.pending = True

    def __getattr__(self, attr_name):
        return getattr(self.stream, attr_name)

    def write(self, data):
        if not data:
            return
        if self.pending:
            self.stream.write(' '*self.indent)
            self.pending = False
        substr = data.rstrip('\n')
        rn = len(data) - len(substr)
        if len(substr) > 0:
            self.stream.write(substr.replace('\n', '\n'+' '*self.indent))
        if rn > 0:
            self.stream.write('\n'*rn)
            self.pending = True

    def flush(self):
        self.stream.flush()

Filter an output stream and start each newline with a number of spaces.

Methods

def write(self, data)
Expand source code
def write(self, data):
    if not data:
        return
    if self.pending:
        self.stream.write(' '*self.indent)
        self.pending = False
    substr = data.rstrip('\n')
    rn = len(data) - len(substr)
    if len(substr) > 0:
        self.stream.write(substr.replace('\n', '\n'+' '*self.indent))
    if rn > 0:
        self.stream.write('\n'*rn)
        self.pending = True
def flush(self)
Expand source code
def flush(self):
    self.stream.flush()