Module thunderlab.tabledata

Tables with hierarchical headers and units

Classes

  • class TableData: tables with a rich hierarchical header including units and column-specific formats. Kind of similar to a pandas data frame, but with intuitive numpy-style indexing and nicely formatted output to csv, html, and latex.

Helper functions

  • write(): shortcut for constructing and writing a TableData.
  • latex_unit(): translate unit string into SIunit LaTeX code.
  • index2aa(): convert an integer into an alphabetical representation.
  • aa2index(): convert an alphabetical representation to an index.

Configuration

  • add_write_table_config(): add parameter specifying how to write a table to a file as a new section to a configuration.
  • write_table_args(): translates a configuration to the respective parameter names for writing a table to a file.

Global variables

var default_missing_str

Default string indicating nan data elements when outputting data.

var default_missing_inputs

Default strings that are translated to nan when loading table data.

Functions

def write(fh,
data,
header,
units=None,
formats=None,
table_format=None,
delimiter=None,
unit_style=None,
column_numbers=None,
sections=None,
align_columns=None,
shrink_width=True,
missing='-',
center_columns=False,
latex_label_command='',
latex_merge_std=False)

Construct table and write to file.

Parameters

fh : filename or stream
If not a stream, the file with name fh is opened. If fh does not have an extension, the table_format is appended as an extension. Otherwise fh is used as a stream for writing.
data : 1-D or 2-D ndarray of data
The data of the table.
header : list of str
Header labels for each column.
units : list of str, optional
Unit strings for each column.
formats : str or list of str, optional
Format strings for each column. If only a single format string is given, then all columns are initialized with this format string.

See TableData.write() for a description of all other parameters.

Example

write(sys.stdout, np.random.randn(4,3), ['aaa', 'bbb', 'ccc'], units=['m', 's', 'g'], formats='%.2f')
def add_write_table_config(cfg,
table_format=None,
delimiter=None,
unit_style=None,
column_numbers=None,
sections=None,
align_columns=None,
shrink_width=True,
missing='-',
center_columns=False,
latex_label_command='',
latex_merge_std=False)

Add parameter specifying how to write a table to a file as a new section to a configuration.

Parameters
----------
cfg: ConfigFile
    The configuration.
def write_table_args(cfg)

Translates a configuration to the respective parameter names for writing a table to a file.

The return value can then be passed as key-word arguments to TableData.write().

Parameters
----------
cfg: ConfigFile
    The configuration.

Returns
-------
a: dict
    Dictionary with names of arguments of the <code><a title="thunderlab.tabledata.TableData.write" href="#thunderlab.tabledata.TableData.write">TableData.write()</a></code> function
    and their values as supplied by <code>cfg</code>.
def latex_unit(unit)

Translate unit string into SIunit LaTeX code.

Parameters

unit : str
String enoting a unit.

Returns

unit : str
Unit string as valid LaTeX code.
def index2aa(n, a='a')

Convert an integer into an alphabetical representation.

The integer number is converted into 'a', 'b', 'c', …, 'z', 'aa', 'ab', 'ac', …, 'az', 'ba', 'bb', …

Inspired by https://stackoverflow.com/a/37604105

Parameters

n : int
An integer to be converted into alphabetical representation.
a : str ('a' or 'A')
Use upper or lower case characters.

Returns

ns : str
Alphabetical represtnation of an integer.
def aa2index(s)

Convert an alphabetical representation to an index.

The alphabetical representation 'a', 'b', 'c', …, 'z', 'aa', 'ab', 'ac', …, 'az', 'ba', 'bb', … is converted to an index starting with 0.

Parameters

s : str
Alphabetical representation of an index.

Returns

index : int
The corresponding index.

Raises

Valueerror

Invalid character in input string.

def main()

Classes

class TableData (data=None,
header=None,
units=None,
formats=None,
missing=['na', 'NA', 'nan', 'NAN', '-'],
stop=None)

Table with numpy-style indexing and a rich hierarchical header including units and formats.

Parameters

data : str, stream, ndarray
  • a filename: load table from file with name data.
  • a stream/file handle: load table from that stream.
  • 1-D or 2-D ndarray of data: the data of the table. Requires als a specified header.
header : list of str
Header labels for each column.
units : list of str, optional
Unit strings for each column.
formats : str or list of str, optional
Format strings for each column. If only a single format string is given, then all columns are initialized with this format string.
missing : list of str
Missing data are indicated by one of these strings.

Manipulate Table Header

Each column of the table has a label (the name of the column), a unit, and a format specifier. Sections group columns into a hierarchy.

  • __init__(): initialize a TableData from data or a file.
  • append(): append column to the table.
  • insert(): insert a table column at a given position.
  • remove(): remove columns from the table.
  • section(): the section name of a specified column.
  • set_section(): set a section name.
  • append_section(): add sections to the table header.
  • insert_section(): insert a section at a given position of the table header.
  • label(): the name of a column.
  • set_label(): set the name of a column.
  • unit(): the unit of a column.
  • set_unit(): set the unit of a column.
  • set_units(): set the units of all columns.
  • format(): the format string of the column.
  • set_format(): set the format string of a column.
  • set_formats(): set the format strings of all columns.

For example:

tf = TableData('data.csv')

loads a table directly from a file. See load() for details.

tf = TableData(np.random.randn(4,3), header=['aaa', 'bbb', 'ccc'], units=['m', 's', 'g'], formats='%.2f')    

results in

aaa    bbb    ccc
m      s      g    
 1.45   0.01   0.16
-0.74  -0.58  -1.34
-2.06   0.08   1.47
-0.43   0.60   1.38

A more elaborate way to construct a table is:

df = TableData()
# first column with section names and 3 data values:
df.append(["data", "partial information", "size"], "m", "%6.2f",
          [2.34, 56.7, 8.9])
# next columns with single data values:
df.append("full weight", "kg", "%.0f", 122.8)
df.append_section("complete reaction")
df.append("speed", "m/s", "%.3g", 98.7)
df.append("median jitter", "mm", "%.1f", 23)
df.append("size", "g", "%.2e", 1.234)
# add a missing value to the second column:
df.append_data(np.nan, 1)
# fill up the remaining columns of the row:
df.append_data((0.543, 45, 1.235e2))
# append data to the next row starting at the second column:
df.append_data((43.21, 6789.1, 3405, 1.235e-4), 1) # next row

results in

data
partial information  complete reaction
size    full weight  speed     median jitter  size
m       kg           m/s       mm             g       
  2.34          123      98.7           23.0  1.23e+00
 56.70            -     0.543           45.0  1.24e+02
  8.90           43  6.79e+03         3405.0  1.23e-04

Table Columns

Columns can be specified by an index or by the name of a column. In table headers with sections the colum can be specified by the section names and the column name separated by '>'.

  • index(): the index of a column.
  • __contains__(): check for existence of a column.
  • find_col(): find the start and end index of a column specification.
  • column_spec(): full specification of a column with all its section names.
  • column_head(): the name, unit, and format of a column.
  • table_header(): the header of the table without content.

For example:

df.index('complete reaction>size)   # returns 4
'speed' in df                       # is True

Iterating Over Columns

A table behaves like an ordered dictionary with column names as keys and the data of each column as values. Iterating over a table goes over columns.

  • keys(): list of unique column keys for all available columns.
  • values(): list of column data corresponding to keys().
  • items(): list of tuples with unique column specifications and the corresponding data.
  • __len__(): the number of columns.
  • __iter__(): initialize iteration over data columns.
  • __next__(): return data of next column as a list.
  • data: the table data as a list over columns each containing a list of data elements.

For example:

print('column specifications:')
for c in range(df.columns()):
    print(df.column_spec(c))
print('keys():')
for c, k in enumerate(df.keys()):
    print('%d: %s' % (c, k))
print('values():')
for c, v in enumerate(df.values()):
    print(v)
print('iterating over the table:')
for v in df:
    print(v)

results in

column specifications:
data>partial information>size
data>partial information>full weight
data>complete reaction>speed
data>complete reaction>median jitter
data>complete reaction>size
keys():
0: data>partial information>size
1: data>partial information>full weight
2: data>complete reaction>speed
3: data>complete reaction>median jitter
4: data>complete reaction>size
values():
[2.34, 56.7, 8.9]
[122.8, nan, 43.21]
[98.7, 0.543, 6789.1]
[23, 45, 3405]
[1.234, 123.5, 0.0001235]
iterating over the table:
[2.34, 56.7, 8.9]
[122.8, nan, 43.21]
[98.7, 0.543, 6789.1]
[23, 45, 3405]
[1.234, 123.5, 0.0001235]

Accessing Data

In contrast to the iterator functions the [] operator treats the table as a 2D-array where the first index indicates the row and the second index the column.

Like a numpy aray the table can be sliced, and logical indexing can be used to select specific parts of the table.

As for any function, columns can be specified as indices or strings.

  • rows(): the number of rows.
  • columns(): the number of columns.
  • shape: number of rows and columns.
  • row(): a single row of the table as TableData.
  • row_dict(): a single row of the table as dictionary.
  • col(): a single column of the table as TableData.
  • __call__(): a single column of the table as ndarray.
  • __getitem__(): data elements specified by slice.
  • __setitem__(): assign values to data elements specified by slice.
  • __delitem__(): delete data elements or whole columns or rows.
  • array(): the table data as a ndarray.
  • data_frame(): the table data as a pandas DataFrame.
  • dicts(): the table as a list of dictionaries.
  • dict(): the table as a dictionary.
  • append_data(): append data elements to successive columns.
  • append_data_column(): append data elements to a column.
  • set_column(): set the column where to add data.
  • fill_data(): fill up all columns with missing data.
  • clear_data(): clear content of the table but keep header.
  • key_value(): a data element returned as a key-value pair.

  • sort(): sort the table rows in place.

  • statistics(): descriptive statistics of each column.

For example:

# single column:    
df('size')     # data of 'size' column as ndarray
df[:,'size']   # data of 'size' column as ndarray
df.col('size') # table with the single column 'size'

# single row:    
df[2,:]    # table with data of only the third row
df.row(2)  # table with data of only the third row

# slices:
df[2:5,['size','jitter']]          # sub-table
df[2:5,['size','jitter']].array()  # ndarray with data only

# logical indexing:
df[df('speed') > 100.0, 'size'] = 0.0 # set size to 0 if speed is > 100

# delete:
del df[3:6, 'weight']  # delete rows 3-6 from column 'weight'
del df[3:5,:]          # delete rows 3-5 completeley
del df[:,'speed']      # remove column 'speed' from table
df.remove('weight')    # remove column 'weigth' from table

# sort and statistics:
df.sort(['weight', 'jitter'])
df.statistics()

statistics() returns a table with standard descriptive statistics:

statistics  data
-           partial information  complete reaction
-           size    full weight  speed     median jitter  size
-           m       kg           m/s       mm             g       
mean         22.65           83   2.3e+03         1157.7  4.16e+01
std          24.23           40  3.18e+03         1589.1  5.79e+01
min           2.34           43     0.543           23.0  1.23e-04
quartile1     5.62           83      49.6           34.0  6.17e-01
median        8.90          123      98.7           45.0  1.23e+00
quartile3    32.80            -  3.44e+03         1725.0  6.24e+01
max          56.70          123  6.79e+03         3405.0  1.24e+02
count         3.00            2         3            3.0  3.00e+00

Write And Load Tables

Table data can be written to a variety of text-based formats including comma separated values, latex and html files. Which columns are written can be controlled by the hide() and show() functions. TableData can be loaded from all the written file formats (except html), also directly via the constructor.

  • hide(): hide a column or a range of columns.
  • hide_all(): hide all columns.
  • hide_empty_columns(): hide all columns that do not contain data.
  • show(): show a column or a range of columns.
  • write(): write table to a file or stream.
  • write_file_stream(): write table to file or stream and return appropriate file name.
  • __str__(): write table to a string.
  • load(): load table from file or stream.
  • formats: list of supported file formats for writing.
  • descriptions: dictionary with descriptions of the supported file formats.
  • extensions: dictionary with default filename extensions for each of the file formats.
  • ext_formats: dictionary mapping filename extensions to file formats.

See documentation of the write() function for examples of the supported file formats.

Expand source code
class TableData(object):
    """Table with numpy-style indexing and a rich hierarchical header including units and formats.
    
    Parameters
    ----------
    data: str, stream, ndarray
        - a filename: load table from file with name `data`.
        - a stream/file handle: load table from that stream.
        - 1-D or 2-D ndarray of data: the data of the table.
          Requires als a specified `header`.
    header: list of str
        Header labels for each column.
    units: list of str, optional
        Unit strings for each column.
    formats: str or list of str, optional
        Format strings for each column. If only a single format string is
        given, then all columns are initialized with this format string.
    missing: list of str
        Missing data are indicated by one of these strings.

    Manipulate table header
    -----------------------

    Each column of the table has a label (the name of the column), a
    unit, and a format specifier. Sections group columns into a hierarchy.

    - `__init__()`: initialize a TableData from data or a file.
    - `append()`: append column to the table.
    - `insert()`: insert a table column at a given position.
    - `remove()`: remove columns from the table.
    - `section()`: the section name of a specified column.
    - `set_section()`: set a section name.
    - `append_section()`: add sections to the table header.
    - `insert_section()`: insert a section at a given position of the table header.
    - `label()`: the name of a column.
    - `set_label()`: set the name of a column.
    - `unit()`: the unit of a column.
    - `set_unit()`: set the unit of a column.
    - `set_units()`: set the units of all columns.
    - `format()`: the format string of the column.
    - `set_format()`: set the format string of a column.
    - `set_formats()`: set the format strings of all columns.

    For example:
    ```
    tf = TableData('data.csv')
    ```
    loads a table directly from a file. See `load()` for details.
    ```
    tf = TableData(np.random.randn(4,3), header=['aaa', 'bbb', 'ccc'], units=['m', 's', 'g'], formats='%.2f')    
    ```
    results in
    ``` plain
    aaa    bbb    ccc
    m      s      g    
     1.45   0.01   0.16
    -0.74  -0.58  -1.34
    -2.06   0.08   1.47
    -0.43   0.60   1.38
    ```

    A more elaborate way to construct a table is:
    ```
    df = TableData()
    # first column with section names and 3 data values:
    df.append(["data", "partial information", "size"], "m", "%6.2f",
              [2.34, 56.7, 8.9])
    # next columns with single data values:
    df.append("full weight", "kg", "%.0f", 122.8)
    df.append_section("complete reaction")
    df.append("speed", "m/s", "%.3g", 98.7)
    df.append("median jitter", "mm", "%.1f", 23)
    df.append("size", "g", "%.2e", 1.234)
    # add a missing value to the second column:
    df.append_data(np.nan, 1)
    # fill up the remaining columns of the row:
    df.append_data((0.543, 45, 1.235e2))
    # append data to the next row starting at the second column:
    df.append_data((43.21, 6789.1, 3405, 1.235e-4), 1) # next row
    ```
    results in
    ``` plain
    data
    partial information  complete reaction
    size    full weight  speed     median jitter  size
    m       kg           m/s       mm             g       
      2.34          123      98.7           23.0  1.23e+00
     56.70            -     0.543           45.0  1.24e+02
      8.90           43  6.79e+03         3405.0  1.23e-04
    ```
    
    Table columns
    -------------

    Columns can be specified by an index or by the name of a column. In
    table headers with sections the colum can be specified by the
    section names and the column name separated by '>'.
    
    - `index()`: the index of a column.
    - `__contains__()`: check for existence of a column.
    - `find_col()`: find the start and end index of a column specification.
    - `column_spec()`: full specification of a column with all its section names.
    - `column_head()`: the name, unit, and format of a column.
    - `table_header()`: the header of the table without content.

    For example:
    ```
    df.index('complete reaction>size)   # returns 4
    'speed' in df                       # is True
    ```

    Iterating over columns
    ----------------------

    A table behaves like an ordered dictionary with column names as
    keys and the data of each column as values.
    Iterating over a table goes over columns.
    
    - `keys()`: list of unique column keys for all available columns.
    - `values()`: list of column data corresponding to keys().
    - `items()`: list of tuples with unique column specifications and the corresponding data.
    - `__len__()`: the number of columns.
    - `__iter__()`: initialize iteration over data columns.
    - `__next__()`: return data of next column as a list.
    - `data`: the table data as a list over columns each containing a list of data elements.

    For example:
    ```
    print('column specifications:')
    for c in range(df.columns()):
        print(df.column_spec(c))
    print('keys():')
    for c, k in enumerate(df.keys()):
        print('%d: %s' % (c, k))
    print('values():')
    for c, v in enumerate(df.values()):
        print(v)
    print('iterating over the table:')
    for v in df:
        print(v)
    ```
    results in
    ``` plain
    column specifications:
    data>partial information>size
    data>partial information>full weight
    data>complete reaction>speed
    data>complete reaction>median jitter
    data>complete reaction>size
    keys():
    0: data>partial information>size
    1: data>partial information>full weight
    2: data>complete reaction>speed
    3: data>complete reaction>median jitter
    4: data>complete reaction>size
    values():
    [2.34, 56.7, 8.9]
    [122.8, nan, 43.21]
    [98.7, 0.543, 6789.1]
    [23, 45, 3405]
    [1.234, 123.5, 0.0001235]
    iterating over the table:
    [2.34, 56.7, 8.9]
    [122.8, nan, 43.21]
    [98.7, 0.543, 6789.1]
    [23, 45, 3405]
    [1.234, 123.5, 0.0001235]
    ```

    Accessing data
    --------------

    In contrast to the iterator functions the [] operator treats the
    table as a 2D-array where the first index indicates the row and
    the second index the column.

    Like a numpy aray the table can be sliced, and logical indexing can
    be used to select specific parts of the table.
    
    As for any function, columns can be specified as indices or strings.
    
    - `rows()`: the number of rows.
    - `columns()`: the number of columns.
    - `shape`: number of rows and columns.
    - `row()`: a single row of the table as TableData.
    - `row_dict()`: a single row of the table as dictionary.
    - `col()`: a single column of the table as TableData.
    - `__call__()`: a single column of the table as ndarray.
    - `__getitem__()`: data elements specified by slice.
    - `__setitem__()`: assign values to data elements specified by slice.
    - `__delitem__()`: delete data elements or whole columns or rows.
    - `array()`: the table data as a ndarray.
    - `data_frame()`: the table data as a pandas DataFrame.
    - `dicts()`: the table as a list of dictionaries.
    - `dict()`: the table as a dictionary.
    - `append_data()`: append data elements to successive columns.
    - `append_data_column()`: append data elements to a column.
    - `set_column()`: set the column where to add data.
    - `fill_data()`: fill up all columns with missing data.
    - `clear_data()`: clear content of the table but keep header.
    - `key_value()`: a data element returned as a key-value pair.
    
    - `sort()`: sort the table rows in place.
    - `statistics()`: descriptive statistics of each column.

    For example:
    ```
    # single column:    
    df('size')     # data of 'size' column as ndarray
    df[:,'size']   # data of 'size' column as ndarray
    df.col('size') # table with the single column 'size'

    # single row:    
    df[2,:]    # table with data of only the third row
    df.row(2)  # table with data of only the third row

    # slices:
    df[2:5,['size','jitter']]          # sub-table
    df[2:5,['size','jitter']].array()  # ndarray with data only

    # logical indexing:
    df[df('speed') > 100.0, 'size'] = 0.0 # set size to 0 if speed is > 100

    # delete:
    del df[3:6, 'weight']  # delete rows 3-6 from column 'weight'
    del df[3:5,:]          # delete rows 3-5 completeley
    del df[:,'speed']      # remove column 'speed' from table
    df.remove('weight')    # remove column 'weigth' from table

    # sort and statistics:
    df.sort(['weight', 'jitter'])
    df.statistics()
    ```
    statistics() returns a table with standard descriptive statistics:
    ``` plain
    statistics  data
    -           partial information  complete reaction
    -           size    full weight  speed     median jitter  size
    -           m       kg           m/s       mm             g       
    mean         22.65           83   2.3e+03         1157.7  4.16e+01
    std          24.23           40  3.18e+03         1589.1  5.79e+01
    min           2.34           43     0.543           23.0  1.23e-04
    quartile1     5.62           83      49.6           34.0  6.17e-01
    median        8.90          123      98.7           45.0  1.23e+00
    quartile3    32.80            -  3.44e+03         1725.0  6.24e+01
    max          56.70          123  6.79e+03         3405.0  1.24e+02
    count         3.00            2         3            3.0  3.00e+00
    ```

    Write and load tables
    ---------------------

    Table data can be written to a variety of text-based formats
    including comma separated values, latex and html files.  Which
    columns are written can be controlled by the hide() and show()
    functions. TableData can be loaded from all the written file formats
    (except html), also directly via the constructor.
    
    - `hide()`: hide a column or a range of columns.
    - `hide_all()`: hide all columns.
    - `hide_empty_columns()`: hide all columns that do not contain data.
    - `show()`: show a column or a range of columns.
    - `write()`: write table to a file or stream.
    - `write_file_stream()`: write table to file or stream and return appropriate file name.
    - `__str__()`: write table to a string.
    - `load()`: load table from file or stream.
    - `formats`: list of supported file formats for writing.
    - `descriptions`: dictionary with descriptions of the supported file formats.
    - `extensions`: dictionary with default filename extensions for each of the file formats.
    - `ext_formats`: dictionary mapping filename extensions to file formats.

    See documentation of the `write()` function for examples of the supported file formats.

    """
    
    formats = ['dat', 'ascii', 'csv', 'rtai', 'md', 'tex', 'html']
    """list of strings: Supported output formats."""
    descriptions = {'dat': 'data text file', 'ascii': 'ascii-art table',
                    'csv': 'comma separated values', 'rtai': 'rtai-style table',
                    'md': 'markdown', 'tex': 'latex tabular',
                    'html': 'html markup'}
    """dict: Decription of output formats corresponding to `formats`."""
    extensions = {'dat': 'dat', 'ascii': 'txt', 'csv': 'csv', 'rtai': 'dat',
                  'md': 'md', 'tex': 'tex', 'html': 'html'}
    """dict: Default file extensions for the output `formats`. """
    ext_formats = {'dat': 'dat', 'DAT': 'dat', 'txt': 'dat', 'TXT': 'dat',
                   'csv': 'csv', 'CSV': 'csv', 'md': 'md', 'MD': 'md',
                   'tex': 'tex', 'TEX': 'tex', 'html': 'html', 'HTML': 'html'}
    """dict: Mapping of file extensions to the output formats."""

    def __init__(self, data=None, header=None, units=None, formats=None,
                 missing=default_missing_inputs, stop=None):
        self.data = []
        self.shape = (0, 0)
        self.header = []
        self.nsecs = 0
        self.units = []
        self.formats = []
        self.hidden = []
        self.setcol = 0
        self.addcol = 0
        if header is not None:
            if units is None:
                units = ['']*len(header)
            if formats is None:
                formats = ['%g']*len(header)
            elif not isinstance(formats, (list, tuple, np.ndarray)):
                formats = [formats]*len(header)
            for h, u, f in zip(header, units, formats):
                self.append(h, u, f)            
        if data is not None:
            if isinstance(data, TableData):
                self.shape = data.shape
                self.nsecs = data.nsecs
                self.setcol = data.setcol
                self.addcol = data.addcol
                for c in range(data.columns()):
                    self.header.append([])
                    for h in data.header[c]:
                        self.header[c].append(h)
                    self.units.append(data.units[c])
                    self.formats.append(data.formats[c])
                    self.hidden.append(data.hidden[c])
                    self.data.append([])
                    for d in data.data[c]:
                        self.data[c].append(d)
            elif isinstance(data, (list, tuple, np.ndarray)):
                if isinstance(data[0], (list, tuple, np.ndarray)):
                    # 2D list, rows first:
                    for row in data:
                        for c, val in enumerate(row):
                            self.data[c].append(val)
                else:
                    # 1D list:
                    for c, val in enumerate(data):
                        self.data[c].append(val)
            else:
                self.load(data, missing, stop)
        
    def append(self, label, unit=None, formats=None, value=None,
               fac=None, key=None):
        """Append column to the table.

        Parameters
        ----------
        label: str or list of str
            Optional section titles and the name of the column.
        unit: str or None
            The unit of the column contents.
        formats: str or None
            The C-style format string used for printing out the column content, e.g.
            '%g', '%.2f', '%s', etc.
            If None, the format is set to '%g'.
        value: None, float, int, str, etc. or list thereof, or list of dict
            If not None, data for the column.
            If list of dictionaries, extract from each dictionary in the list
            the value specified by `key`. If `key` is `None` use `label` as
            the key.
        fac: float
            If not None, multiply the data values by this number.
        key: None or key of a dictionary
            If not None and `value` is a list of dictionaries,
            extract from each dictionary in the list the value specified
            by `key` and assign the resulting list as data to the column.

        Returns
        -------
        index: int
            The index of the new column.
        """
        if self.addcol >= len(self.data):
            if isinstance(label, (list, tuple, np.ndarray)):
                self.header.append(list(reversed(label)))
                label = label[-1]
            else:
                self.header.append([label])
            self.formats.append(formats or '%g')
            self.units.append(unit or '')
            self.hidden.append(False)
            self.data.append([])
            if self.nsecs < len(self.header[-1])-1:
                self.nsecs = len(self.header[-1])-1
        else:
            if isinstance(label, (list, tuple, np.ndarray)):
                self.header[self.addcol] = list(reversed(label)) + self.header[self.addcol]
                label = label[-1]
            else:
                self.header[self.addcol] = [label] + self.header[self.addcol]
            self.units[self.addcol] = unit or ''
            self.formats[self.addcol] = formats or '%g'
            if self.nsecs < len(self.header[self.addcol])-1:
                self.nsecs = len(self.header[self.addcol])-1
        if not key:
            key = label
        if value is not None:
            if isinstance(value, (list, tuple, np.ndarray)):
                if key and len(value) > 0 and isinstance(value[0], dict):
                    value = [d[key] if key in d else float('nan') for d in value]
                self.data[-1].extend(value)
            else:
                self.data[-1].append(value)
        if fac:
            for k in range(len(self.data[-1])):
                self.data[-1][k] *= fac
        self.addcol = len(self.data)
        self.shape = (self.rows(), self.columns())
        return self.addcol-1
        
    def insert(self, column, label, unit=None, formats=None, value=None):
        """Insert a table column at a given position.

        .. WARNING::
           If no `value` is given, the inserted column is an empty list.

        Parameters
        ----------
        columns int or str
            Column before which to insert the new column.
            Column can be specified by index or name,
            see `index()` for details.
        label: str or list of str
            Optional section titles and the name of the column.
        unit: str or None
            The unit of the column contents.
        formats: str or None
            The C-style format string used for printing out the column content, e.g.
            '%g', '%.2f', '%s', etc.
            If None, the format is set to '%g'.
        value: None, float, int, str, etc. or list thereof
            If not None, data for the column.

        Returns
        -------
        index: int
            The index of the inserted column.
            
        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        col = self.index(column)
        if col is None:
            if isinstance(column, (np.integer, int)):
                column = '%d' % column
            raise IndexError('Cannot insert before non-existing column ' + column)
        if isinstance(label, (list, tuple, np.ndarray)):
            self.header.insert(col, list(reversed(label)))
        else:
            self.header.insert(col, [label])
        self.formats.insert(col, formats or '%g')
        self.units.insert(col, unit or '')
        self.hidden.insert(col, False)
        self.data.insert(col, [])
        if self.nsecs < len(self.header[col])-1:
            self.nsecs = len(self.header[col])-1
        if value is not None:
            if isinstance(value, (list, tuple, np.ndarray)):
                self.data[col].extend(value)
            else:
                self.data[col].append(value)
        self.addcol = len(self.data)
        self.shape = (self.rows(), self.columns())
        return col

    def remove(self, columns):
        """Remove columns from the table.

        Parameters
        -----------
        columns: int or str or list of int of str
            Columns can be specified by index or name,
            see `index()` for details.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        # fix columns:
        if not isinstance(columns, (list, tuple, np.ndarray)):
            columns = [ columns ]
        if not columns:
            return
        # remove:
        for col in columns:
            c = self.index(col)
            if c is None:
                if isinstance(col, (np.integer, int)):
                    col = '%d' % col
                raise IndexError('Cannot remove non-existing column ' + col)
                continue
            if c+1 < len(self.header):
                self.header[c+1].extend(self.header[c][len(self.header[c+1]):])
            del self.header[c]
            del self.units[c]
            del self.formats[c]
            del self.hidden[c]
            del self.data[c]
        if self.setcol >= len(self.data):
            self.setcol = 0
        self.shape = (self.rows(), self.columns())

    def section(self, column, level):
        """The section name of a specified column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        level: int
            The level of the section to be returned. The column label itself is level=0.

        Returns
        -------
        name: str
            The name of the section at the specified level containing
            the column.
        index: int
            The column index that contains this section
            (equal or smaller thant `column`).

        Raises
        ------
        IndexError:
            If `level` exceeds the maximum possible level.
        """
        if level < 0 or level > self.nsecs:
            raise IndexError('Invalid section level')
        column = self.index(column)
        while len(self.header[column]) <= level:
            column -= 1
        return self.header[column][level], column
    
    def set_section(self, label, column, level):
        """Set a section name.

        Parameters
        ----------
        label: str
            The new name to be used for the section.
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        level: int
            The level of the section to be set. The column label itself is level=0.
        """
        column = self.index(column)
        self.header[column][level] = label
        return column

    def append_section(self, label):
        """Add sections to the table header.

        Each column of the table has a header label. Columns can be
        grouped into sections. Sections can be nested arbitrarily.

        Parameters
        ----------
        label: stri or list of str
            The name(s) of the section(s).

        Returns
        -------
        index: int
            The column index where the section was appended.
        """
        if self.addcol >= len(self.data):
            if isinstance(label, (list, tuple, np.ndarray)):
                self.header.append(list(reversed(label)))
            else:
                self.header.append([label])
            self.units.append('')
            self.formats.append('')
            self.hidden.append(False)
            self.data.append([])
        else:
            if isinstance(label, (list, tuple, np.ndarray)):
                self.header[self.addcol] = list(reversed(label)) + self.header[self.addcol]
            else:
                self.header[self.addcol] = [label] + self.header[self.addcol]
        if self.nsecs < len(self.header[self.addcol]):
            self.nsecs = len(self.header[self.addcol])
        self.addcol = len(self.data)-1
        self.shape = (self.rows(), self.columns())
        return self.addcol
        
    def insert_section(self, column, section):
        """Insert a section at a given position of the table header.

        Parameters
        ----------
        columns int or str
            Column before which to insert the new section.
            Column can be specified by index or name,
            see `index()` for details.
        section: str
            The name of the section.

        Returns
        -------
        index: int
            The index of the column where the section was inserted.
            
        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        col = self.index(column)
        if col is None:
            if isinstance(column, (np.integer, int)):
                column = '%d' % column
            raise IndexError('Cannot insert at non-existing column ' + column)
        self.header[col].append(section)
        if self.nsecs < len(self.header[col])-1:
            self.nsecs = len(self.header[col])-1
        return col

    def label(self, column):
        """The name of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        name: str
            The column label.
        """
        column = self.index(column)
        return self.header[column][0]

    def set_label(self, label, column):
        """Set the name of a column.

        Parameters
        ----------
        label: str
            The new name to be used for the column.
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        """        
        column = self.index(column)
        self.header[column][0] = label
        return column

    def unit(self, column):
        """The unit of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        unit: str
            The unit.
        """
        column = self.index(column)
        return self.units[column]

    def set_unit(self, unit, column):
        """Set the unit of a column.

        Parameters
        ----------
        unit: str
            The new unit to be used for the column.
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        """
        column = self.index(column)
        self.units[column] = unit
        return column

    def set_units(self, units):
        """Set the units of all columns.

        Parameters
        ----------
        units: list of str
            The new units to be used.
        """
        for c, u in enumerate(units):
            self.units[c] = u

    def format(self, column):
        """The format string of the column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        format: str
            The format string.
        """
        column = self.index(column)
        return self.formats[column]

    def set_format(self, format, column):
        """Set the format string of a column.

        Parameters
        ----------
        format: str
            The new format string to be used for the column.
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        """
        column = self.index(column)
        self.formats[column] = format
        return column

    def set_formats(self, formats):
        """Set the format strings of all columns.

        Parameters
        ----------
        formats: str or list of str
            The new format strings to be used.
            If only a single format is specified,
            then all columns get the same format.
        """
        if isinstance(formats, (list, tuple, np.ndarray)):
            for c, f in enumerate(formats):
                self.formats[c] = f or '%g'
        else:
            for c in range(len(self.formats)):
                self.formats[c] = formats or '%g'

    def table_header(self):
        """The header of the table without content.

        Returns
        -------
        data: TableData
            A TableData object with the same header but empty data.
        """
        data = TableData()
        sec_indices = [-1] * self.nsecs
        for c in range(self.columns()):
            data.append(*self.column_head(c))
            for l in range(self.nsecs):
                s, i = self.section(c, l+1)
                if i != sec_indices[l]:
                    data.header[-1].append(s)
                    sec_indices[l] = i
        data.nsecs = self.nsecs
        return data

    def column_head(self, column):
        """The name, unit, and format of a column.

        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        name: str
            The column label.
        unit: str
            The unit.
        format: str
            The format string.
        """
        column = self.index(column)
        return self.header[column][0], self.units[column], self.formats[column]

    def column_spec(self, column):
        """Full specification of a column with all its section names.

        Parameters
        ----------
        column: int or str
            Specifies the column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        s: str
            Full specification of the column by all its section names and its header name.
        """
        c = self.index(column)
        fh = [self.header[c][0]]
        for l in range(self.nsecs):
            fh.append(self.section(c, l+1)[0])
        return '>'.join(reversed(fh))
    
    def find_col(self, column):
        """Find the start and end index of a column specification.
        
        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        c0: int or None
            A valid column index or None that is specified by `column`.
        c1: int or None
            A valid column index or None of the column following the range specified
            by `column`.
        """

        def find_column_indices(ss, si, minns, maxns, c0, strict=True):
            if si >= len(ss):
                return None, None, None, None
            ns0 = 0
            for ns in range(minns, maxns+1):
                nsec = maxns-ns
                if ss[si] == '':
                    si += 1
                    continue
                for c in range(c0, len(self.header)):
                    if nsec < len(self.header[c]) and \
                        ( ( strict and self.header[c][nsec] == ss[si] ) or
                          ( not strict and ss[si] in self.header[c][nsec] ) ):
                        ns0 = ns
                        c0 = c
                        si += 1
                        if si >= len(ss):
                            c1 = len(self.header)
                            for c in range(c0+1, len(self.header)):
                                if nsec < len(self.header[c]):
                                    c1 = c
                                    break
                            return c0, c1, ns0, None
                        elif nsec > 0:
                            break
            return None, c0, ns0, si

        if column is None:
            return None, None
        if not isinstance(column, (np.integer, int)) and column.isdigit():
            column = int(column)
        if isinstance(column, (np.integer, int)):
            if column >= 0 and column < len(self.header):
                return column, column+1
            else:
                return None, None
        # find column by header:
        ss = column.rstrip('>').split('>')
        maxns = self.nsecs
        si0 = 0
        while si0 < len(ss) and ss[si0] == '':
            maxns -= 1
            si0 += 1
        if maxns < 0:
            maxns = 0
        c0, c1, ns, si = find_column_indices(ss, si0, 0, maxns, 0, True)
        if c0 is None and c1 is not None:
            c0, c1, ns, si = find_column_indices(ss, si, ns, maxns, c1, False)
        return c0, c1

    def index(self, column):
        """The index of a column.
        
        Parameters
        ----------
        column: None, int, or str
            A specification of a column.
            - None: no column is specified
            - int: the index of the column (first column is zero), e.g. `index(2)`.
            - a string representing an integer is converted into the column index,
              e.g. `index('2')`
            - a string specifying a column by its header.
              Header names of descending hierarchy are separated by '>'.

        Returns
        -------
        index: int or None
            A valid column index or None.
        """
        c0, c1 = self.find_col(column)
        return c0

    def __contains__(self, column):
        """Check for existence of a column.

        Parameters
        ----------
        column: None, int, or str
            The column to be checked.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        contains: bool
            True if `column` specifies an existing column key.
        """
        return self.index(column) is not None

    def keys(self):
        """List of unique column keys for all available columns.

        Returns
        -------
        keys: list of str
            List of unique column specifications.
        """
        return [self.column_spec(c) for c in range(self.columns())]

    def values(self):
        """List of column data corresponding to keys().

        Returns
        -------
        data: list of list of values
            The data of the table. First index is columns!
        """
        return self.data

    def items(self):
        """Column names and corresponding data.

        Returns
        -------
        items: list of tuples
            Unique column specifications and the corresponding data.
        """
        return [(self.column_spec(c), self.data[c]) for c in range(self.columns())]
        
    def __len__(self):
        """The number of columns.
        
        Returns
        -------
        columns: int
            The number of columns contained in the table.
        """
        return self.columns()

    def __iter__(self):
        """Initialize iteration over data columns.
        """
        self.iter_counter = -1
        return self

    def __next__(self):
        """Next column of data.

        Returns
        -------
        data: list of values
            Table data of next column.
        """
        self.iter_counter += 1
        if self.iter_counter >= self.columns():
            raise StopIteration
        else:
            return self.data[self.iter_counter]

    def next(self):
        """Return next data columns.  (python2 syntax)

        See also:
        ---------
        `__next__()`
        """
        return self.__next__()

    def rows(self):
        """The number of rows.
        
        Returns
        -------
        rows: int
            The number of rows contained in the table.
        """
        return max(map(len, self.data)) if self.data else 0
    
    def columns(self):
        """The number of columns.
        
        Returns
        -------
        columns: int
            The number of columns contained in the table.
        """
        return len(self.header)

    def row(self, index):
        """A single row of the table.

        Parameters
        ----------
        index: int
            The index of the row to be returned.

        Returns
        -------
        data: TableData
            A TableData object with a single row.
        """
        data = TableData()
        sec_indices = [-1] * self.nsecs
        for c in range(self.columns()):
            data.append(*self.column_head(c))
            for l in range(self.nsecs):
                s, i = self.section(c, l+1)
                if i != sec_indices[l]:
                    data.header[-1].append(s)
                    sec_indices[l] = i
            data.data[-1] = [self.data[c][index]]
        data.nsecs = self.nsecs
        return data

    def row_dict(self, index):
        """A single row of the table.

        Parameters
        ----------
        index: int
            The index of the row to be returned.

        Returns
        -------
        data: dict
            A dictionary with column header as key and corresponding data value of row `index`
            as value.
        """
        data = {}
        for c in range(self.columns()):
            data[self.label(c)] = self.data[c][index]
        return data

    def col(self, column):
        """A single column of the table.

        Parameters
        ----------
        column: None, int, or str
            The column to be returned.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        table: TableData
            A TableData object with a single column.
        """
        data = TableData()
        c = self.index(column)
        data.append(*self.column_head(c))
        data.data = [self.data[c]]
        data.nsecs = 0
        return data

    def __call__(self, column):
        """A single column of the table as a ndarray.

        Parameters
        ----------
        column: None, int, or str
            The column to be returned.
            See self.index() for more information on how to specify a column.

        Returns
        -------
        data: 1-D ndarray
            Content of the specified column as a ndarray.
        """
        c = self.index(column)
        return np.asarray(self.data[c])

    def __setupkey(self, key):
        """Helper function that turns a key into row and column indices.

        Returns
        -------
        rows: list of int, slice, None
            Indices of selected rows.
        cols: list of int
            Indices of selected columns.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        if type(key) is not tuple:
            rows = key
            cols = range(self.columns())
        else:
            rows = key[0]
            cols = key[1]
        if isinstance(cols, slice):
            start = cols.start
            if start is not None:
                start = self.index(start)
                if start is None:
                    raise IndexError('"%s" is not a valid column index' % cols.start)
            stop = cols.stop
            if stop is not None:
                stop = self.index(stop)
                if stop is None:
                    raise IndexError('"%s" is not a valid column index' % cols.stop)
            cols = slice(start, stop, cols.step)
            cols = range(self.columns())[cols]
        else:
            if not isinstance(cols, (list, tuple, np.ndarray)):
                cols = [cols]
            c = [self.index(inx) for inx in cols]
            if None in c:
                raise IndexError('"%s" is not a valid column index' % cols[c.index(None)])
            cols = c
        if isinstance(rows, np.ndarray) and rows.dtype == np.dtype(bool):
            rows = np.where(rows)[0]
            if len(rows) == 0:
                rows = None
        return rows, cols

    def __getitem__(self, key):
        """Data elements specified by slice.

        Parameters
        -----------
        key:
            First key specifies row, (optional) second one the column.
            Columns can be specified by index or name,
            see `index()` for details.

        Returns
        -------
        data:
            - A single data value if a single row and a single column is specified.
            - A ndarray of data elements if a single single column is specified.
            - A TableData object for multiple columns.
            - None if no row is selected (e.g. by a logical index that nowhere is True)

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        rows, cols = self.__setupkey(key)
        if len(cols) == 1:
            if rows is None:
                return None
            elif isinstance(rows, slice):
                return np.asarray(self.data[cols[0]][rows])
            elif isinstance(rows, (list, tuple, np.ndarray)):
                return np.asarray([self.data[cols[0]][r] for r in rows])
            else:
                return self.data[cols[0]][rows]
        else:
            data = TableData()
            sec_indices = [-1] * self.nsecs
            for c in cols:
                data.append(*self.column_head(c))
                for l in range(self.nsecs):
                    s, i = self.section(c, l+1)
                    if i != sec_indices[l]:
                        data.header[-1].append(s)
                        sec_indices[l] = i
                if rows is None:
                    continue
                if isinstance(rows, (list, tuple, np.ndarray)):
                    for r in rows:
                        data.data[-1].append(self.data[c][r])
                else:
                    if isinstance(self.data[c][rows], (list, tuple, np.ndarray)):
                        data.data[-1].extend(self.data[c][rows])
                    else:
                        data.data[-1].append(self.data[c][rows])
            data.nsecs = self.nsecs
            return data

    def __setitem__(self, key, value):
        """Assign values to data elements specified by slice.

        Parameters
        -----------
        key:
            First key specifies row, (optional) second one the column.
            Columns can be specified by index or name,
            see `index()` for details.
        value: TableData, list, ndarray, float, ...
            Value(s) used to assing to the table elements as specified by `key`.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        rows, cols = self.__setupkey(key)
        if rows is None:
            return
        if isinstance(value, TableData):
            if isinstance(self.data[cols[0]][rows], (list, tuple, np.ndarray)):
                for k, c in enumerate(cols):
                    self.data[c][rows] = value.data[k]
            else:
                for k, c in enumerate(cols):
                    self.data[c][rows] = value.data[k][0]
        else:
            if len(cols) == 1:
                if isinstance(rows, (list, tuple, np.ndarray)):
                    if len(rows) == 1:
                        self.data[cols[0]][rows[0]] = value
                    elif isinstance(value, (list, tuple, np.ndarray)):
                        for k, r in enumerate(rows):
                            self.data[cols[0]][r] = value[k]
                    else:
                        for r in rows:
                            self.data[cols[0]][r] = value
                elif isinstance(value, (list, tuple, np.ndarray)):
                    self.data[cols[0]][rows] = value
                elif isinstance(rows, (np.integer, int)):
                    self.data[cols[0]][rows] = value
                else:
                    n = len(self.data[cols[0]][rows])
                    if n > 1:
                        self.data[cols[0]][rows] = [value]*n
                    else:
                        self.data[cols[0]][rows] = value
            else:
                if isinstance(self.data[0][rows], (list, tuple, np.ndarray)):
                    for k, c in enumerate(cols):
                        self.data[c][rows] = value[:,k]
                elif isinstance(value, (list, tuple, np.ndarray)):
                    for k, c in enumerate(cols):
                        self.data[c][rows] = value[k]
                else:
                    for k, c in enumerate(cols):
                        self.data[c][rows] = value

    def __delitem__(self, key):
        """Delete data elements or whole columns or rows.

        Parameters
        -----------
        key:
            First key specifies row, (optional) second one the column.
            Columns can be specified by index or name,
            see `index()` for details.
            If all rows are selected, then the specified columns are removed from the table.
            Otherwise only data values are removed.
            If all columns are selected than entire rows of data values are removed.
            Otherwise only data values in the specified rows are removed.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        rows, cols = self.__setupkey(key)
        if rows is None:
            return
        row_indices = np.arange(self.rows(), dtype=int)[rows]
        if isinstance(row_indices, np.ndarray):
            if len(row_indices) == self.rows():
                # delete whole columns:
                self.remove(cols)
            elif len(row_indices) > 0:
                for r in reversed(sorted(row_indices)):
                    for c in cols:
                        del self.data[c][r]
                self.shape = (self.rows(), self.columns())
        else:
            for c in cols:
                del self.data[c][row_indices]
            self.shape = (self.rows(), self.columns())

    def array(self, row=None):
        """The table data as a ndarray.

        Parameters
        ----------
        row: int or None
            If specified, a 1D ndarray of that row will be returned.

        Returns
        -------
        data: 2D or 1D ndarray
            If no row is specified, the data content of the entire table
            as a 2D ndarray (rows first).
            If a row is specified, a 1D ndarray of that row.
        """
        if row is None:
            return np.array(self.data).T
        else:
            return np.array([d[row] for d in self.data])

    def data_frame(self):
        """The table data as a pandas DataFrame.

        Returns
        -------
        data: pandas.DataFrame
            A pandas DataFrame of the whole table.
        """
        return pd.DataFrame(self.dict())

    def dicts(self, raw_values=True, missing=default_missing_str):
        """The table as a list of dictionaries.

        Parameters
        ----------
        raw_values: bool
            If True, use raw table values as values,
            else format the values and add unit string.
        missing: str
            String indicating non-existing data elements.

        Returns
        -------
        table: list of dict
            For each row of the table a dictionary with header as key.
        """
        table = []
        for row in range(self.rows()):
            data = {}
            for col in range(len(self.header)):
                if raw_values:
                    v = self.data[col][row];
                else:
                    if isinstance(self.data[col][row], (float, np.floating)) and m.isnan(self.data[col][row]):
                        v = missing
                    else:
                        u = ''
                        if not self.units[col] in '1-' and self.units[col] != 'a.u.':
                            u = self.units[col]
                        v = (self.formats[col] % self.data[col][row]) + u
                data[self.header[col][0]] = v
            table.append(data)
        return table

    def dict(self):
        """The table as a dictionary.

        Returns
        -------
        table: dict
            A dictionary with keys being the column headers and
            values the list of data elements of the corresponding column.
        """
        table = {k: v for k, v in self.items()}
        return table

    def append_data(self, data, column=None):
        """Append data elements to successive columns.

        The current column is set behid the added columns.

        Parameters
        ----------
        data: float, int, str, etc. or list thereof or list of list thereof or dict or list of dict
            Data values to be appended to successive columns:
            - A single value is simply appened to the specified column of the table.
            - A 1D-list of values is appended to successive columns of the table
              starting with the specified column.
            - The columns of a 2D-list of values (second index) are appended
              to successive columns of the table starting with the specified column.
            - Values or list of values of a dictionary are added to the
              columns specified by the keys. Does not affect the current column.
            - The values of dictionaries in a list are appended to the
              columns specified by the keys. Does not affect the current column.
        column: None, int, or str
            The first column to which the data should be appended,
            if `data` does not specify columns.
            If None, append to the current column.
            See self.index() for more information on how to specify a column.
        """
        column = self.index(column)
        if column is None:
            column = self.setcol
        if isinstance(data, (list, tuple, np.ndarray)):
            if isinstance(data[0], (list, tuple, np.ndarray)):
                # 2D list, rows first:
                for row in data:
                    for i, val in enumerate(row):
                        self.data[column+i].append(val)
                self.setcol = column + len(data[0])
            elif isinstance(data[0], dict):
                # list of dictionaries:
                for row in data:
                    for key in row:
                        column = self.index(k)
                        self.data[column].append(data[k])
            else:
                # 1D list:
                for val in data:
                    self.data[column].append(val)
                    column += 1
                self.setcol = column
        elif isinstance(data, dict):
            # dictionary with values:
            for key in data:
                column = self.index(key)
                if isinstance(data[key], (list, tuple, np.ndarray)):
                    self.data[column].extend(data[key])
                else:
                    self.data[column].append(data[key])
        else:
            # single value:
            self.data[column].append(data)
            self.setcol = column + 1
        if self.setcol >= len(self.data):
            self.setcol = 0
        self.shape = (self.rows(), self.columns())

    def append_data_column(self, data, column=None):
        """Append data elements to a column.

        The current column is incremented by one.

        Parameters
        ----------
        data: float, int, str, etc. or list thereof
            Data values to be appended to a column.
        column: None, int, or str
            The column to which the data should be appended.
            If None, append to the current column.
            See self.index() for more information on how to specify a column.
        """
        column = self.index(column)
        if column is None:
            column = self.setcol
        if isinstance(data, (list, tuple, np.ndarray)):
            self.data[column].extend(data)
            column += 1
            self.setcol = column
        else:
            self.data[column].append(data)
            self.setcol = column+1
        if self.setcol >= len(self.data):
            self.setcol = 0
        self.shape = (self.rows(), self.columns())

    def set_column(self, column):
        """Set the column where to add data.

        Parameters
        ----------
        column: int or str
            The column to which data elements should be appended.
            See self.index() for more information on how to specify a column.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        col = self.index(column)
        if col is None:
            if isinstance(column, (np.integer, int)):
                column = '%d' % column
            raise IndexError('column ' + column + ' not found or invalid')
        self.setcol = col
        return col

    def fill_data(self):
        """Fill up all columns with missing data to have the same number of
        data elements.
        """
        # maximum rows:
        maxr = self.rows()
        # fill up:
        for c in range(len(self.data)):
            while len(self.data[c]) < maxr:
                self.data[c].append(np.nan)
        self.setcol = 0
        self.shape = (self.rows(), self.columns())

    def clear_data(self):
        """Clear content of the table but keep header.
        """
        for c in range(len(self.data)):
            self.data[c] = []
        self.setcol = 0
        self.shape = (self.rows(), self.columns())
                
    def sort(self, columns, reverse=False):
        """Sort the table rows in place.

        Parameters
        ----------
        columns: int or str or list of int or str
            A column specifier or a list of column specifiers of the columns
            to be sorted.
        reverse: boolean
            If `True` sort in descending order.

        Raises
        ------
        IndexError:
            If an invalid column was specified.
        """
        # fix columns:
        if not isinstance(columns, (list, tuple, np.ndarray)):
            columns = [ columns ]
        if not columns:
            return
        cols = []
        for col in columns:
            c = self.index(col)
            if c is None:
                if isinstance(col, (np.integer, int)):
                    col = '%d' % col
                raise IndexError('sort column ' + col + ' not found')
                continue
            cols.append(c)
        # get sorted row indices:
        row_inx = range(self.rows())
        row_inx = sorted(row_inx, key=lambda x : [float('-inf') if self.data[c][x] is np.nan \
                         or self.data[c][x] != self.data[c][x] \
                         else self.data[c][x] for c in cols], reverse=reverse)
        # sort table according to indices:
        for c in range(self.columns()):
            self.data[c] = [self.data[c][r] for r in row_inx]

    def statistics(self):
        """Descriptive statistics of each column.
        """
        ds = TableData()
        if self.nsecs > 0:
            ds.append_section('statistics')
            for l in range(1,self.nsecs):
                ds.append_section('-')
            ds.append('-', '-', '%-10s')
        else:
            ds.append('statistics', '-', '%-10s')
        ds.append_data('mean', 0)
        ds.append_data('std', 0)
        ds.append_data('min', 0)
        ds.append_data('quartile1', 0)
        ds.append_data('median', 0)
        ds.append_data('quartile3', 0)
        ds.append_data('max', 0)
        ds.append_data('count', 0)
        dc = 1
        for c in range(self.columns()):
            if len(self.data[c]) > 0 and isinstance(self.data[c][0], (float, int, np.floating, np.integer)):
                ds.hidden.append(False)
                ds.header.append(self.header[c])
                ds.units.append(self.units[c])
                # integer data still make floating point statistics:
                if isinstance(self.data[c][0], (float, np.floating)):
                    f = self.formats[c]
                    i0 = f.find('.')
                    if i0 > 0:
                        p = int(f[i0+1:-1])
                        if p <= 0:
                            f = '%.1f'
                    ds.formats.append(f)
                else:
                    ds.formats.append('%.1f')
                # remove nans:
                data = np.asarray(self.data[c], float)
                data = data[np.isfinite(data)]
                # compute statistics:
                ds.data.append([])
                ds.append_data(np.mean(data), dc)
                ds.append_data(np.std(data), dc)
                ds.append_data(np.min(data), dc)
                q1, m, q3 = np.percentile(data, [25., 50., 75.])
                ds.append_data(q1, dc)
                ds.append_data(m, dc)
                ds.append_data(q3, dc)
                ds.append_data(np.max(data), dc)
                ds.append_data(len(data), dc)
                dc += 1
        ds.nsecs = self.nsecs
        ds.shape = (ds.rows(), ds.columns())
        return ds

    def key_value(self, row, col, missing=default_missing_str):
        """A data element returned as a key-value pair.

        Parameters
        ----------
        row: int
            Specifies the row from which the data element should be retrieved.
        col: None, int, or str
            A specification of a column.
            See self.index() for more information on how to specify a column.
        missing: str
            String indicating non-existing data elements.

        Returns
        -------
        key: str
            Header label of the column
        value: str
            A textual representation of the data element according to the format
            of the column, followed by the unit of the column.
        """
        col = self.index(col)
        if col is None:
            return ''
        if isinstance(self.data[col][row], (float, np.floating)) and m.isnan(self.data[col][row]):
            v = missing
        else:
            u = ''
            if not self.units[col] in '1-' and self.units[col] != 'a.u.':
                u = self.units[col]
            v = (self.formats[col] % self.data[col][row]) + u
        return self.header[col][0], v

    def hide(self, column):
        """Hide a column or a range of columns.

        Hidden columns will not be printed out by the write() function.

        Parameters
        ----------
        column: int or str
            The column to be hidden.
            See self.index() for more information on how to specify a column.
        """
        c0, c1 = self.find_col(column)
        if c0 is not None:
            for c in range(c0, c1):
                self.hidden[c] = True

    def hide_all(self):
        """Hide all columns.

        Hidden columns will not be printed out by the write() function.
        """
        for c in range(len(self.hidden)):
            self.hidden[c] = True

    def hide_empty_columns(self, missing=default_missing_inputs):
        """Hide all columns that do not contain data.

        Hidden columns will not be printed out by the write() function.

        Parameters
        ----------
        missing: list of str
            Strings indicating missing data.
        """
        for c in range(len(self.data)):
            # check for empty column:
            isempty = True
            for v in self.data[c]:
                if isinstance(v, (float, np.floating)):
                    if not m.isnan(v):
                        isempty = False
                        break
                else:
                    if not v in missing:
                        isempty = False
                        break
            if isempty:
                self.hidden[c] = True

    def show(self, column):
        """Show a column or a range of columns.

        Undoes hiding of a column.

        Parameters
        ----------
        column: int or str
            The column to be shown.
            See self.index() for more information on how to specify a column.
        """
        c0, c1 = self.find_col(column)
        if c0 is not None:
            for c in range(c0, c1):
                self.hidden[c] = False

    def write(self, fh=sys.stdout, table_format=None, delimiter=None,
              unit_style=None, column_numbers=None, sections=None,
              align_columns=None, shrink_width=True,
              missing=default_missing_str, center_columns=False,
              latex_label_command='', latex_merge_std=False):
        """Write the table to a file or stream.

        Parameters
        ----------
        fh: filename or stream
            If not a stream, the file with name `fh` is opened.
            If `fh` does not have an extension,
            the `table_format` is appended as an extension.
            Otherwise `fh` is used as a stream for writing.
        table_format: None or str
            The format to be used for output.
            One of 'out', 'dat', 'ascii', 'csv', 'rtai', 'md', 'tex', 'html'.
            If None or 'auto' then the format is set to the extension of the filename given by `fh`.
            If `fh` is a stream the format is set to 'dat'.
        delimiter: str
            String or character separating columns, if supported by the `table_format`.
            If None or 'auto' use the default for the specified `table_format`.
        unit_style: None or str
            - None or 'auto': use default of the specified `table_format`.
            - 'row': write an extra row to the table header specifying the units of the columns.
            - 'header': add the units to the column headers.
            - 'none': do not specify the units.
        column_numbers: str or None
            Add a row specifying the column index:
            - 'index': indices are integers, first column is 0.
            - 'num': indices are integers, first column is 1.
            - 'aa': use 'a', 'b', 'c', ..., 'z', 'aa', 'ab', ... for indexing
            - 'aa': use 'A', 'B', 'C', ..., 'Z', 'AA', 'AB', ... for indexing
            - None or 'none': do not add a row with column indices
            TableData.column_numbering is a list with the supported styles.
        sections: None or int
            Number of section levels to be printed.
            If `None` or 'auto' use default of selected `table_format`.
        align_columns: boolean
            - `True`: set width of column formats to make them align.
            - `False`: set width of column formats to 0 - no unnecessary spaces.
            - None or 'auto': Use default of the selected `table_format`.
        shrink_width: boolean
            If `True` disregard width specified by the format strings,
            such that columns can become narrower.
        missing: str
            Indicate missing data by this string.
        center_columns: boolean
            If True center all columns (markdown, html, and latex).
        latex_label_command: str
            LaTeX command for formatting header labels.
            E.g. 'textbf' for making the header labels bold.
        latex_merge_std: str
            Merge header of columns with standard deviations with previous column
            (LaTeX tables only).

        Returns
        -------
        file_name: str or None
            The full name of the file into which the data were written.

        Supported file formats
        ----------------------
        
        ## `dat`: data text file
        ``` plain
        # info           reaction     
        # size   weight  delay  jitter
        # m      kg      ms     mm    
           2.34     123   98.7      23
          56.70    3457   54.3      45
           8.90      43   67.9     345
        ```

        ## `ascii`: ascii-art table
        ``` plain
        |---------------------------------|
        | info           | reaction       |
        | size  | weight | delay | jitter |
        | m     | kg     | ms    | mm     |
        |-------|--------|-------|--------|
        |  2.34 |    123 |  98.7 |     23 |
        | 56.70 |   3457 |  54.3 |     45 |
        |  8.90 |     43 |  67.9 |    345 |
        |---------------------------------|
        ```

        ## `csv`: comma separated values
        ``` plain
        size/m,weight/kg,delay/ms,jitter/mm
        2.34,123,98.7,23
        56.70,3457,54.3,45
        8.90,43,67.9,345
        ```

        ## `rtai`: rtai-style table
        ``` plain
        RTH| info         | reaction     
        RTH| size | weight| delay| jitter
        RTH| m    | kg    | ms   | mm    
        RTD|  2.34|    123|  98.7|     23
        RTD| 56.70|   3457|  54.3|     45
        RTD|  8.90|     43|  67.9|    345
        ```

        ## `md`: markdown
        ``` plain
        | size/m | weight/kg | delay/ms | jitter/mm |
        |------:|-------:|------:|-------:|
        |  2.34 |    123 |  98.7 |     23 |
        | 56.70 |   3457 |  54.3 |     45 |
        |  8.90 |     43 |  67.9 |    345 |
        ```

        ## `tex`: latex tabular
        ``` tex
        \\begin{tabular}{rrrr}
          \\hline
          \\multicolumn{2}{l}{info} & \\multicolumn{2}{l}{reaction} \\
          \\multicolumn{1}{l}{size} & \\multicolumn{1}{l}{weight} & \\multicolumn{1}{l}{delay} & \\multicolumn{1}{l}{jitter} \\
          \\multicolumn{1}{l}{m} & \\multicolumn{1}{l}{kg} & \\multicolumn{1}{l}{ms} & \\multicolumn{1}{l}{mm} \\
          \\hline
          2.34 & 123 & 98.7 & 23 \\
          56.70 & 3457 & 54.3 & 45 \\
          8.90 & 43 & 67.9 & 345 \\
          \\hline
        \\end{tabular}
        ```

        ## `html`: html
        ``` html
        <table>
        <thead>
          <tr class="header">
            <th align="left" colspan="2">info</th>
            <th align="left" colspan="2">reaction</th>
          </tr>
          <tr class="header">
            <th align="left">size</th>
            <th align="left">weight</th>
            <th align="left">delay</th>
            <th align="left">jitter</th>
          </tr>
          <tr class="header">
            <th align="left">m</th>
            <th align="left">kg</th>
            <th align="left">ms</th>
            <th align="left">mm</th>
          </tr>
        </thead>
        <tbody>
          <tr class"odd">
            <td align="right">2.34</td>
            <td align="right">123</td>
            <td align="right">98.7</td>
            <td align="right">23</td>
          </tr>
          <tr class"even">
            <td align="right">56.70</td>
            <td align="right">3457</td>
            <td align="right">54.3</td>
            <td align="right">45</td>
          </tr>
          <tr class"odd">
            <td align="right">8.90</td>
            <td align="right">43</td>
            <td align="right">67.9</td>
            <td align="right">345</td>
          </tr>
        </tbody>
        </table>
        ```
        """
        # fix parameter:
        if table_format == 'auto':
            table_format = None
        if delimiter == 'auto':
            delimiter = None
        if unit_style == 'auto':
            unit_style = None
        if column_numbers == 'none':
            column_numbers = None
        if sections == 'auto':
            sections = None
        if align_columns == 'auto':
            align_columns = None
        # open file:
        own_file = False
        file_name = None
        if not hasattr(fh, 'write'):
            _, ext = os.path.splitext(fh)
            if table_format is None:
                if len(ext) > 1 and ext[1:] in self.ext_formats:
                    table_format = self.ext_formats[ext[1:]]
            elif not ext or not ext[1:].lower() in self.ext_formats:
                fh += '.' + self.extensions[table_format]
            file_name = fh
            fh = open(fh, 'w')
            own_file = True
        if table_format is None:
            table_format = 'dat'
        # set style:        
        if table_format[0] == 'd':
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start = '# '
            header_sep = '  '
            header_close = ''
            header_end = '\n'
            data_start = '  '
            data_sep = '  '
            data_close = ''
            data_end = '\n'
            top_line = False
            header_line = False
            bottom_line = False
            if delimiter is not None:
                header_sep = delimiter
                data_sep = delimiter
            if sections is None:
                sections = 1000
        elif table_format[0] == 'a':
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start = '| '
            header_sep = ' | '
            header_close = ''
            header_end = ' |\n'
            data_start = '| '
            data_sep = ' | '
            data_close = ''
            data_end = ' |\n'
            top_line = True
            header_line = True
            bottom_line = True
            if delimiter is not None:
                header_sep = delimiter
                data_sep = delimiter
            if sections is None:
                sections = 1000
        elif table_format[0] == 'c':
            # csv according to http://www.ietf.org/rfc/rfc4180.txt :
            column_numbers=None
            if unit_style is None:
                unit_style = 'header'
            if align_columns is None:
                align_columns = False
            begin_str = ''
            end_str = ''
            header_start=''
            header_sep = ','
            header_close = ''
            header_end='\n'
            data_start=''
            data_sep = ','
            data_close = ''
            data_end='\n'
            top_line = False
            header_line = False
            bottom_line = False
            if delimiter is not None:
                header_sep = delimiter
                data_sep = delimiter
            if sections is None:
                sections = 0
        elif table_format[0] == 'r':
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start = 'RTH| '
            header_sep = '| '
            header_close = ''
            header_end = '\n'
            data_start = 'RTD| '
            data_sep = '| '
            data_close = ''
            data_end = '\n'
            top_line = False
            header_line = False
            bottom_line = False
            if sections is None:
                sections = 1000
        elif table_format[0] == 'm':
            if unit_style is None or unit_style == 'row':
                unit_style = 'header'
            align_columns = True
            begin_str = ''
            end_str = ''
            header_start='| '
            header_sep = ' | '
            header_close = ''
            header_end=' |\n'
            data_start='| '
            data_sep = ' | '
            data_close = ''
            data_end=' |\n'
            top_line = False
            header_line = True
            bottom_line = False
            if sections is None:
                sections = 0
        elif table_format[0] == 'h':
            align_columns = False
            begin_str = '<table>\n<thead>\n'
            end_str = '</tbody>\n</table>\n'
            if center_columns:
                header_start='  <tr>\n    <th align="center"'
                header_sep = '</th>\n    <th align="center"'
            else:
                header_start='  <tr>\n    <th align="left"'
                header_sep = '</th>\n    <th align="left"'
            header_close = '>'
            header_end='</th>\n  </tr>\n'
            data_start='  <tr>\n    <td'
            data_sep = '</td>\n    <td'
            data_close = '>'
            data_end='</td>\n  </tr>\n'
            top_line = False
            header_line = False
            bottom_line = False
            if sections is None:
                sections = 1000
        elif table_format[0] == 't':
            if align_columns is None:
                align_columns = False
            begin_str = '\\begin{tabular}'
            end_str = '\\end{tabular}\n'
            header_start='  '
            header_sep = ' & '
            header_close = ''
            header_end=' \\\\\n'
            data_start='  '
            data_sep = ' & '
            data_close = ''
            data_end=' \\\\\n'
            top_line = True
            header_line = True
            bottom_line = True
            if sections is None:
                sections = 1000
        else:
            if align_columns is None:
                align_columns = True
            begin_str = ''
            end_str = ''
            header_start = ''
            header_sep = '  '
            header_close = ''
            header_end = '\n'
            data_start = ''
            data_sep = '  '
            data_close = ''
            data_end = '\n'
            top_line = False
            header_line = False
            bottom_line = False
            if sections is None:
                sections = 1000
        # check units:
        if unit_style is None:
            unit_style = 'row'
        have_units = False
        for u in self.units:
            if u and u != '1' and u != '-':
                have_units = True
                break
        if not have_units:
            unit_style = 'none'
        # find std columns:
        stdev_col = np.zeros(len(self.header), dtype=bool)
        for c in range(len(self.header)-1):
            if self.header[c+1][0].lower() in ['sd', 'std', 's.d.', 'stdev'] and \
               not self.hidden[c+1]:
                stdev_col[c] = True
        # begin table:
        fh.write(begin_str)
        if table_format[0] == 't':
            fh.write('{')
            merged = False
            for h, f, s in zip(self.hidden, self.formats, stdev_col):
                if merged:
                    fh.write('l')
                    merged = False
                    continue
                if h:
                    continue
                if latex_merge_std and s:
                    fh.write('r@{$\\,\\pm\\,$}')
                    merged = True
                elif center_columns:
                    fh.write('c')
                elif f[1] == '-':
                    fh.write('l')
                else:
                    fh.write('r')
            fh.write('}\n')
        # retrieve column formats and widths:
        widths = []
        widths_pos = []
        for c, f in enumerate(self.formats):
            w = 0
            # position of width specification:
            i0 = 1
            if len(f) > 1 and f[1] == '-' :
                i0 = 2
            i1 = f.find('.')
            if not shrink_width:
                if f[i0:i1]:
                    w = int(f[i0:i1])
            widths_pos.append((i0, i1))
            # adapt width to header label:
            hw = len(self.header[c][0])
            if unit_style == 'header' and self.units[c] and\
               self.units[c] != '1' and self.units[c] != '-':
                hw += 1 + len(self.units[c])
            if w < hw:
                w = hw
            # adapt width to data:
            if f[-1] == 's':
                for v in self.data[c]:
                    if not isinstance(v, (float, np.floating)) and w < len(v):
                        w = len(v)
            else:
                fs = f[:i0] + str(0) + f[i1:]
                for v in self.data[c]:
                    if isinstance(v, (float, np.floating)) and m.isnan(v):
                        s = missing
                    else:
                        try:
                            s = fs % v
                        except ValueError:
                            s = missing
                    if w < len(s):
                        w = len(s)
            widths.append(w)
        # adapt width to sections:
        sec_indices = [0] * self.nsecs
        sec_widths = [0] * self.nsecs
        sec_columns = [0] * self.nsecs
        for c in range(len(self.header)):
            w = widths[c]
            for l in range(min(self.nsecs, sections)):
                if 1+l < len(self.header[c]):
                    if c > 0 and sec_columns[l] > 0 and \
                       1+l < len(self.header[sec_indices[l]]) and \
                       len(self.header[sec_indices[l]][1+l]) > sec_widths[l]:
                        dw = len(self.header[sec_indices[l]][1+l]) - sec_widths[l]
                        nc = sec_columns[l]
                        ddw = np.zeros(nc, dtype=int) + dw // nc
                        ddw[:dw % nc] += 1
                        wk = 0
                        for ck in range(sec_indices[l], c):
                            if not self.hidden[ck]:
                                widths[ck] += ddw[wk]
                                wk += 1
                    sec_widths[l] = 0
                    sec_indices[l] = c
                if not self.hidden[c]:
                    if sec_widths[l] > 0:
                        sec_widths[l] += len(header_sep)
                    sec_widths[l] += w
                    sec_columns[l] += 1
        # set width of format string:
        formats = []
        for c, (f, w) in enumerate(zip(self.formats, widths)):
            formats.append(f[:widths_pos[c][0]] + str(w) + f[widths_pos[c][1]:])
        # top line:
        if top_line:
            if table_format[0] == 't':
                fh.write('  \\hline \\\\[-2ex]\n')
            else:
                first = True
                fh.write(header_start.replace(' ', '-'))
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    if not first:
                        fh.write('-'*len(header_sep))
                    first = False
                    fh.write(header_close)
                    w = widths[c]
                    fh.write(w*'-')
                fh.write(header_end.replace(' ', '-'))
        # section and column headers:
        nsec0 = self.nsecs-sections
        if nsec0 < 0:
            nsec0 = 0
        for ns in range(nsec0, self.nsecs+1):
            nsec = self.nsecs-ns
            first = True
            last = False
            merged = False
            fh.write(header_start)
            for c in range(len(self.header)):
                if nsec < len(self.header[c]):
                    # section width and column count:
                    sw = -len(header_sep)
                    columns = 0
                    if not self.hidden[c]:
                        sw = widths[c]
                        columns = 1
                    for k in range(c+1, len(self.header)):
                        if nsec < len(self.header[k]):
                            break
                        if self.hidden[k]:
                            continue
                        sw += len(header_sep) + widths[k]
                        columns += 1
                    else:
                        last = True
                        if len(header_end.strip()) == 0:
                            sw = 0  # last entry needs no width
                    if columns == 0:
                        continue
                    if not first and not merged:
                        fh.write(header_sep)
                    first = False
                    if table_format[0] == 'c':
                        sw -= len(header_sep)*(columns-1)
                    elif table_format[0] == 'h':
                        if columns>1:
                            fh.write(' colspan="%d"' % columns)
                    elif table_format[0] == 't':
                        if merged:
                            merged = False
                            continue
                        if latex_merge_std and nsec == 0 and stdev_col[c]:
                            merged = True
                            fh.write('\\multicolumn{%d}{c}{' % (columns+1))
                        elif center_columns:
                            fh.write('\\multicolumn{%d}{c}{' % columns)
                        else:
                            fh.write('\\multicolumn{%d}{l}{' % columns)
                        if latex_label_command:
                            fh.write('\\%s{' % latex_label_command)
                    fh.write(header_close)
                    hs = self.header[c][nsec]
                    if nsec == 0 and unit_style == 'header':
                        if self.units[c] and self.units[c] != '1' and self.units[c] != '-':
                            hs += '/' + self.units[c]
                    if align_columns and not table_format[0] in 'th':
                        f = '%%-%ds' % sw
                        fh.write(f % hs)
                    else:
                        fh.write(hs)
                    if table_format[0] == 'c':
                        if not last:
                            fh.write(header_sep*(columns-1))
                    elif table_format[0] == 't':
                        if latex_label_command:
                            fh.write('}')
                        fh.write('}')
            fh.write(header_end)
        # units:
        if unit_style == 'row':
            first = True
            merged = False
            fh.write(header_start)
            for c in range(len(self.header)):
                if self.hidden[c] or merged:
                    merged = False
                    continue
                if not first:
                    fh.write(header_sep)
                first = False
                fh.write(header_close)
                unit = self.units[c]
                if not unit:
                    unit = '-'
                if table_format[0] == 't':
                    if latex_merge_std and stdev_col[c]:
                        merged = True
                        fh.write('\\multicolumn{2}{c}{%s}' % latex_unit(unit))
                    elif center_columns:
                        fh.write('\\multicolumn{1}{c}{%s}' % latex_unit(unit))
                    else:
                        fh.write('\\multicolumn{1}{l}{%s}' % latex_unit(unit))
                else:
                    if align_columns and not table_format[0] in 'h':
                        f = '%%-%ds' % widths[c]
                        fh.write(f % unit)
                    else:
                        fh.write(unit)
            fh.write(header_end)
        # column numbers:
        if column_numbers is not None:
            first = True
            fh.write(header_start)
            for c in range(len(self.header)):
                if self.hidden[c]:
                    continue
                if not first:
                    fh.write(header_sep)
                first = False
                fh.write(header_close)
                i = c
                if column_numbers == 'num':
                    i = c+1
                aa = index2aa(c, 'a')
                if column_numbers == 'AA':
                    aa = index2aa(c, 'A')
                if table_format[0] == 't':
                    if column_numbers == 'num' or column_numbers == 'index':
                        fh.write('\\multicolumn{1}{l}{%d}' % i)
                    else:
                        fh.write('\\multicolumn{1}{l}{%s}' % aa)
                else:
                    if column_numbers == 'num' or column_numbers == 'index':
                        if align_columns:
                            f = '%%%dd' % widths[c]
                            fh.write(f % i)
                        else:
                            fh.write('%d' % i)
                    else:
                        if align_columns:
                            f = '%%-%ds' % widths[c]
                            fh.write(f % aa)
                        else:
                            fh.write(aa)
            fh.write(header_end)
        # header line:
        if header_line:
            if table_format[0] == 'm':
                fh.write('|')
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    w = widths[c]+2
                    if center_columns:
                        fh.write(':' + (w-2)*'-' + ':|')
                    elif formats[c][1] == '-':
                        fh.write(w*'-' + '|')
                    else:
                        fh.write((w-1)*'-' + ':|')
                fh.write('\n')
            elif table_format[0] == 't':
                fh.write('  \\hline \\\\[-2ex]\n')
            else:
                first = True
                fh.write(header_start.replace(' ', '-'))
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    if not first:
                        fh.write(header_sep.replace(' ', '-'))
                    first = False
                    fh.write(header_close)
                    w = widths[c]
                    fh.write(w*'-')
                fh.write(header_end.replace(' ', '-'))
        # start table data:
        if table_format[0] == 'h':
            fh.write('</thead>\n<tbody>\n')
        # data:
        for k in range(self.rows()):
            first = True
            merged = False
            fh.write(data_start)
            for c, f in enumerate(formats):
                if self.hidden[c] or merged:
                    merged = False
                    continue
                if not first:
                    fh.write(data_sep)
                first = False
                if table_format[0] == 'h':
                    if center_columns:
                        fh.write(' align="center"')
                    elif f[1] == '-':
                        fh.write(' align="left"')
                    else:
                        fh.write(' align="right"')
                fh.write(data_close)
                if k >= len(self.data[c]) or \
                   (isinstance(self.data[c][k], (float, np.floating)) and m.isnan(self.data[c][k])):
                    # missing data:
                    if table_format[0] == 't' and latex_merge_std and stdev_col[c]:
                        merged = True
                        fh.write('\\multicolumn{2}{c}{%s}' % missing)
                    elif align_columns:
                        if f[1] == '-':
                            fn = '%%-%ds' % widths[c]
                        else:
                            fn = '%%%ds' % widths[c]
                        fh.write(fn % missing)
                    else:
                        fh.write(missing)
                else:
                    # data value:
                    try:
                        ds = f % self.data[c][k]
                    except ValueError:
                        ds = missing
                    if not align_columns:
                        ds = ds.strip()
                    fh.write(ds)
            fh.write(data_end)
        # bottom line:
        if bottom_line:
            if table_format[0] == 't':
                fh.write('  \\hline\n')
            else:
                first = True
                fh.write(header_start.replace(' ', '-'))
                for c in range(len(self.header)):
                    if self.hidden[c]:
                        continue
                    if not first:
                        fh.write('-'*len(header_sep))
                    first = False
                    fh.write(header_close)
                    w = widths[c]
                    fh.write(w*'-')
                fh.write(header_end.replace(' ', '-'))
        # end table:
        fh.write(end_str)
        # close file:
        if own_file:
            fh.close()
        # return file name:
        return file_name


    def write_file_stream(self, basename, file_name, **kwargs):
        """Write table to file or stream and return appropriate file name.

        Parameters
        ----------
        basename: str or stream
            If str, path and basename of file.
            `file_name` and an extension are appended.
            If stream, write table data into this stream.
        file_name: str
            Name of file that is appended to a base path or `basename`.
        kwargs:
            Arguments passed on to `TableData.write()`.
            In particular, 'table_format' is used to the set the file extension
            that is appended to the returned `file_name`.

        Returns
        -------
        file_name: str
            Path and full name of the written file in case of `basename`
            being a string. Otherwise, the file name and extension that
            should be appended to a base path.
        """
        if hasattr(basename, 'write'):
            table_format = kwargs.get('table_format', None)
            if table_format is None or table_format == 'auto':
                table_format = 'csv'
            file_name += '.' + TableData.extensions[table_format]
            self.write(basename, **kwargs)
            return file_name
        else:
            file_name = self.write(basename + file_name, **kwargs)
            return file_name

            
    def __str__(self):
        """Write table to a string.
        """
        stream = StringIO()
        self.write(stream, table_format='out')
        return stream.getvalue()
                

    def load(self, fh, missing=default_missing_inputs, stop=None):
        """Load table from file or stream.

        File type and properties are automatically inferred.

        Parameters
        ----------
        fh: str or stream
            If not a stream, the file with name `fh` is opened for reading.
        missing: str or list of str
            Missing data are indicated by this string and
            are translated to np.nan.
        stop: str or None
            If the beginning of a line matches `stop`, then stop reading the file.

        Raises
        ------
        FileNotFoundError:
            If `fh` is a path that does not exist.
        """

        def read_key_line(line, sep, table_format):
            if sep is None:
                cols, indices = zip(*[(m.group(0), m.start()) for m in re.finditer(r'( ?[\S]+)+(?=[ ][ ]+|\Z)', line.strip())])
            elif table_format == 'csv':
                cols, indices = zip(*[(c.strip(), i) for i, c in enumerate(line.strip().split(sep)) if c.strip()])
                return cols, indices
            else:
                seps = r'[^'+re.escape(sep)+']+'
                cols, indices = zip(*[(m.group(0), m.start()) for m in re.finditer(seps, line.strip())])
            colss = []
            indicess = []
            if table_format == 'tex':
                i = 0
                for c in cols:
                    if 'multicolumn' in c:
                        fields = c.split('{')
                        n = int(fields[1].strip().rstrip('}').rstrip())
                        colss.append(fields[3].strip().rstrip('}').rstrip())
                        indicess.append(i)
                        i += n
                    else:
                        colss.append(c.strip())
                        indicess.append(i)
                        i += 1
            else:
                for k, (c, i) in enumerate(zip(cols, indices)):
                    if k == 0:
                        c = c.lstrip('|')
                    if k == len(cols)-1:
                        c = c.rstrip('|')
                    cs = c.strip()
                    colss.append(cs)
                    indicess.append(i)
            return colss, indicess

        def read_data_line(line, sep, post, precd, alld, numc, exped,
                           fixed, strf, missing, nans):
            # read line:
            cols = []
            if sep is None:
                cols = [m.group(0) for m in re.finditer(r'\S+', line.strip())]
            else:
                if sep.isspace():
                    seps = r'[^'+re.escape(sep)+']+'
                    cols = [m.group(0) for m in re.finditer(seps, line.strip())]
                else:
                    cols = line.split(sep)
                    if len(cols) > 0 and len(cols[0]) == 0:
                        cols = cols[1:]
                    if len(cols) > 0 and len(cols[-1]) == 0:
                        cols = cols[:-1]
                if len(cols) > 0:
                    cols[0] = cols[0].lstrip('|').lstrip()
                    cols[-1] = cols[-1].rstrip('|').rstrip()
            cols = [c.strip() for c in cols if c != '|']
            # read columns:
            for k, c in enumerate(cols):
                try:
                    v = float(c)
                    ad = 0
                    ve = c.split('e')
                    if len(ve) <= 1:
                        exped[k] = False
                    else:
                        ad = len(ve[1])+1
                    vc = ve[0].split('.')
                    ad += len(vc[0])
                    prec = len(vc[0].lstrip('-').lstrip('+').lstrip('0')) 
                    if len(vc) == 2:
                        if numc[k] and post[k] != len(vc[1]):
                            fixed[k] = False
                        if post[k] < len(vc[1]):
                            post[k] = len(vc[1])
                        ad += len(vc[1])+1
                        prec += len(vc[1].rstrip('0'))
                    if precd[k] < prec:
                        precd[k] = prec
                    if alld[k] < ad:
                        alld[k] = ad
                    numc[k] = True
                except ValueError:
                    if c in missing:
                        v = np.nan
                        nans[k] = c
                    else:
                        strf[k] = True
                        if alld[k] < len(c):
                            alld[k] = len(c)
                        v = c
                self.append_data(v, k)

        # initialize:
        if isinstance(missing, str):
            missing = [missing]
        self.data = []
        self.shape = (0, 0)
        self.header = []
        self.nsecs = 0
        self.units = []
        self.formats = []
        self.hidden = []
        self.setcol = 0
        self.addcol = 0
        # open file:
        own_file = False
        if not hasattr(fh, 'readline'):
            fh = open(fh, 'r')
            own_file = True
        # read inital lines of file:
        key = []
        data = []
        target = data
        comment = False
        table_format='dat'        
        for line in fh:
            line = line.rstrip()
            if line == stop:
                break;
            if line:
                if r'\begin{tabular' in line:
                    table_format='tex'
                    target = key
                    continue
                if table_format == 'tex':
                    if r'\end{tabular' in line:
                        break
                    if r'\hline' in line:
                        if key:
                            target = data
                        continue
                    line = line.rstrip(r'\\')
                if line[0] == '#':
                    comment = True
                    table_format='dat'        
                    target = key
                    line = line.lstrip('#')
                elif comment:
                    target = data
                if line[0:3] == 'RTH':
                    target = key
                    line = line[3:]
                    table_format='rtai'
                elif line[0:3] == 'RTD':
                    target = data
                    line = line[3:]
                    table_format='rtai'        
                if (line[0:3] == '|--' or line[0:3] == '|:-') and \
                   (line[-3:] == '--|' or line[-3:] == '-:|'):
                    if not data and not key:
                        table_format='ascii'
                        target = key
                        continue
                    elif not key:
                        table_format='md'
                        key = data
                        data = []
                        target = data
                        continue
                    elif not data:
                        target = data
                        continue
                    else:
                        break
                target.append(line)
            else:
                break
            if len(data) > 5:
                break
        # find column separator of data and number of columns:
        col_seps = ['|', ',', ';', ':', '\t', '&', None]
        colstd = np.zeros(len(col_seps))
        colnum = np.zeros(len(col_seps), dtype=int)
        for k, sep in enumerate(col_seps):
            cols = []
            s = 5 if len(data) >= 8 else len(data) - 3
            if s < 0 or key:
                s = 0
            for line in data[s:]:
                cs = line.strip().split(sep)
                if not cs[0]:
                    cs = cs[1:]
                if cs and not cs[-1]:
                    cs = cs[:-1]
                cols.append(len(cs))
            colstd[k] = np.std(cols)
            colnum[k] = np.median(cols)
        if np.max(colnum) < 2:
            sep = None
            colnum = 1
        else:
            ci = np.where(np.array(colnum)>1.5)[0]
            ci = ci[np.argmin(colstd[ci])]
            sep = col_seps[ci]
            colnum = int(colnum[ci])
        # fix key:
        if not key and sep is not None and sep in ',;:\t|':
            table_format = 'csv'
        # read key:
        key_cols = []
        key_indices = []
        for line in key:
            cols, indices = read_key_line(line, sep, table_format)
            key_cols.append(cols)
            key_indices.append(indices)
        if not key_cols:
            # no obviously marked table key:
            key_num = 0
            for line in data:
                cols, indices = read_key_line(line, sep, table_format)
                numbers = 0
                for c in cols:
                    try:
                        v = float(c)
                        numbers += 1
                    except ValueError:
                        pass
                if numbers == 0:
                    key_cols.append(cols)
                    key_indices.append(indices)
                    key_num += 1
                else:
                    break
            data = data[key_num:]
        kr = len(key_cols)-1
        # check for key with column indices:
        if kr >= 0:
            cols = key_cols[kr]
            numrow = True
            try:
                pv = int(cols[0])
                for c in cols[1:]:
                    v = int(c)
                    if v != pv+1:
                        numrow = False
                        break
                    pv = v
            except ValueError:
                try:
                    pv = aa2index(cols[0])
                    for c in cols[1:]:
                        v = aa2index(c)
                        if v != pv+1:
                            numrow = False
                            break
                        pv = v
                except ValueError:
                    numrow = False
            if numrow:
                kr -= 1
        # check for unit line:
        units = None
        if kr > 0 and len(key_cols[kr]) == len(key_cols[kr-1]):
            units = key_cols[kr]
            kr -= 1
        # column labels:
        if kr >= 0:
            if units is None:
                # units may be part of the label:
                labels = []
                units = []
                for c in key_cols[kr]:
                    if c[-1] == ')':
                        lu = c[:-1].split('(')
                        if len(lu) >= 2:
                            labels.append(lu[0].strip())
                            units.append('('.join(lu[1:]).strip())
                            continue
                    lu = c.split('/')
                    if len(lu) >= 2:
                        labels.append(lu[0].strip())
                        units.append('/'.join(lu[1:]).strip())
                    else:
                        labels.append(c)
                        units.append('')
            else:
                labels = key_cols[kr]
            indices = key_indices[kr]
            # init table columns:
            for k in range(colnum):
                self.append(labels[k], units[k], '%g')
        # read in sections:
        while kr > 0:
            kr -= 1
            for sec_label, sec_inx in zip(key_cols[kr], key_indices[kr]):
                col_inx = indices.index(sec_inx)
                self.header[col_inx].append(sec_label)
                if self.nsecs < len(self.header[col_inx])-1:
                    self.nsecs = len(self.header[col_inx])-1
        # read data:
        post = np.zeros(colnum)
        precd = np.zeros(colnum)
        alld = np.zeros(colnum)
        numc = [False] * colnum
        exped = [True] * colnum
        fixed = [True] * colnum
        strf = [False] * colnum
        nans = [None] * colnum
        for line in data:
            read_data_line(line, sep, post, precd, alld, numc, exped, fixed,
                           strf, missing, nans)
        # read remaining data:
        for line in fh:
            line = line.rstrip()
            if line == stop:
                break;
            if table_format == 'tex':
                if r'\end{tabular' in line or r'\hline' in line:
                    break
                line = line.rstrip(r'\\')
            if (line[0:3] == '|--' or line[0:3] == '|:-') and \
                (line[-3:] == '--|' or line[-3:] == '-:|'):
                break
            if line[0:3] == 'RTD':
                line = line[3:]
            read_data_line(line, sep, post, precd, alld, numc, exped, fixed,
                           strf, missing, nans)
        # set formats:
        for k in range(len(alld)):
            if strf[k]:
                self.set_format('%%-%ds' % alld[k], k)
                # make sure all elements are strings:
                for i in range(len(self.data[k])):
                    if self.data[k][i] is np.nan:
                        self.data[k][i] = nans[k]
                    else:
                        self.data[k][i] = str(self.data[k][i])
            elif exped[k]:
                self.set_format('%%%d.%de' % (alld[k], post[k]), k)
            elif fixed[k]:
                self.set_format('%%%d.%df' % (alld[k], post[k]), k)
            else:
                self.set_format('%%%d.%dg' % (alld[k], precd[k]), k)
        # close file:
        if own_file:
            fh.close()

Class variables

var formats

list of strings: Supported output formats.

var descriptions

dict: Decription of output formats corresponding to formats.

var extensions

dict: Default file extensions for the output formats.

var ext_formats

dict: Mapping of file extensions to the output formats.

Methods

def append(self, label, unit=None, formats=None, value=None, fac=None, key=None)

Append column to the table.

Parameters

label : str or list of str
Optional section titles and the name of the column.
unit : str or None
The unit of the column contents.
formats : str or None
The C-style format string used for printing out the column content, e.g. '%g', '%.2f', '%s', etc. If None, the format is set to '%g'.
value : None, float, int, str, etc. or list thereof, or list of dict
If not None, data for the column. If list of dictionaries, extract from each dictionary in the list the value specified by key. If key is None use label as the key.
fac : float
If not None, multiply the data values by this number.
key : None or key of a dictionary
If not None and value is a list of dictionaries, extract from each dictionary in the list the value specified by key and assign the resulting list as data to the column.

Returns

index : int
The index of the new column.
def insert(self, column, label, unit=None, formats=None, value=None)

Insert a table column at a given position.

Warning

If no value is given, the inserted column is an empty list.

Parameters

columns int or str
Column before which to insert the new column.
Column can be specified by index or name,
see index() for details.
label : str or list of str
Optional section titles and the name of the column.
unit : str or None
The unit of the column contents.
formats : str or None
The C-style format string used for printing out the column content, e.g. '%g', '%.2f', '%s', etc. If None, the format is set to '%g'.
value : None, float, int, str, etc. or list thereof
If not None, data for the column.

Returns

index : int
The index of the inserted column.

Raises

Indexerror

If an invalid column was specified.

def remove(self, columns)

Remove columns from the table.

Parameters

columns : int or str or list of int of str
Columns can be specified by index or name, see index() for details.

Raises

Indexerror

If an invalid column was specified.

def section(self, column, level)

The section name of a specified column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
level : int
The level of the section to be returned. The column label itself is level=0.

Returns

name : str
The name of the section at the specified level containing the column.
index : int
The column index that contains this section (equal or smaller thant column).

Raises

Indexerror

If level exceeds the maximum possible level.

def set_section(self, label, column, level)

Set a section name.

Parameters

label : str
The new name to be used for the section.
column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
level : int
The level of the section to be set. The column label itself is level=0.
def append_section(self, label)

Add sections to the table header.

Each column of the table has a header label. Columns can be grouped into sections. Sections can be nested arbitrarily.

Parameters

label : stri or list of str
The name(s) of the section(s).

Returns

index : int
The column index where the section was appended.
def insert_section(self, column, section)

Insert a section at a given position of the table header.

Parameters

columns int or str
Column before which to insert the new section.
Column can be specified by index or name,
see index() for details.
section : str
The name of the section.

Returns

index : int
The index of the column where the section was inserted.

Raises

Indexerror

If an invalid column was specified.

def label(self, column)

The name of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

name : str
The column label.
def set_label(self, label, column)

Set the name of a column.

Parameters

label : str
The new name to be used for the column.
column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
def unit(self, column)

The unit of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

unit : str
The unit.
def set_unit(self, unit, column)

Set the unit of a column.

Parameters

unit : str
The new unit to be used for the column.
column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
def set_units(self, units)

Set the units of all columns.

Parameters

units : list of str
The new units to be used.
def format(self, column)

The format string of the column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

format : str
The format string.
def set_format(self, format, column)

Set the format string of a column.

Parameters

format : str
The new format string to be used for the column.
column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
def set_formats(self, formats)

Set the format strings of all columns.

Parameters

formats : str or list of str
The new format strings to be used. If only a single format is specified, then all columns get the same format.
def table_header(self)

The header of the table without content.

Returns

data : TableData
A TableData object with the same header but empty data.
def column_head(self, column)

The name, unit, and format of a column.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

name : str
The column label.
unit : str
The unit.
format : str
The format string.
def column_spec(self, column)

Full specification of a column with all its section names.

Parameters

column : int or str
Specifies the column. See self.index() for more information on how to specify a column.

Returns

s : str
Full specification of the column by all its section names and its header name.
def find_col(self, column)

Find the start and end index of a column specification.

Parameters

column : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.

Returns

c0 : int or None
A valid column index or None that is specified by column.
c1 : int or None
A valid column index or None of the column following the range specified by column.
def index(self, column)

The index of a column.

Parameters

column : None, int, or str
A specification of a column. - None: no column is specified - int: the index of the column (first column is zero), e.g. index(2). - a string representing an integer is converted into the column index, e.g. index('2') - a string specifying a column by its header. Header names of descending hierarchy are separated by '>'.

Returns

index : int or None
A valid column index or None.
def __contains__(self, column)

Check for existence of a column.

Parameters

column : None, int, or str
The column to be checked. See self.index() for more information on how to specify a column.

Returns

contains : bool
True if column specifies an existing column key.
def keys(self)

List of unique column keys for all available columns.

Returns

keys : list of str
List of unique column specifications.
def values(self)

List of column data corresponding to keys().

Returns

data : list of list of values
The data of the table. First index is columns!
def items(self)

Column names and corresponding data.

Returns

items : list of tuples
Unique column specifications and the corresponding data.
def __len__(self)

The number of columns.

Returns

columns : int
The number of columns contained in the table.
def __iter__(self)

Initialize iteration over data columns.

def __next__(self)

Next column of data.

Returns

data : list of values
Table data of next column.
def next(self)

Return next data columns. (python2 syntax)

See also:

__next__()

def rows(self)

The number of rows.

Returns

rows : int
The number of rows contained in the table.
def columns(self)

The number of columns.

Returns

columns : int
The number of columns contained in the table.
def row(self, index)

A single row of the table.

Parameters

index : int
The index of the row to be returned.

Returns

data : TableData
A TableData object with a single row.
def row_dict(self, index)

A single row of the table.

Parameters

index : int
The index of the row to be returned.

Returns

data : dict
A dictionary with column header as key and corresponding data value of row index as value.
def col(self, column)

A single column of the table.

Parameters

column : None, int, or str
The column to be returned. See self.index() for more information on how to specify a column.

Returns

table : TableData
A TableData object with a single column.
def __call__(self, column)

A single column of the table as a ndarray.

Parameters

column : None, int, or str
The column to be returned. See self.index() for more information on how to specify a column.

Returns

data : 1-D ndarray
Content of the specified column as a ndarray.
def __getitem__(self, key)

Data elements specified by slice.

Parameters

key: First key specifies row, (optional) second one the column. Columns can be specified by index or name, see index() for details.

Returns

data:
  • A single data value if a single row and a single column is specified.
  • A ndarray of data elements if a single single column is specified.
  • A TableData object for multiple columns.
  • None if no row is selected (e.g. by a logical index that nowhere is True)

Raises

Indexerror

If an invalid column was specified.

def __setitem__(self, key, value)

Assign values to data elements specified by slice.

Parameters

key: First key specifies row, (optional) second one the column. Columns can be specified by index or name, see index() for details. value: TableData, list, ndarray, float, … Value(s) used to assing to the table elements as specified by key.

Raises

Indexerror

If an invalid column was specified.

def __delitem__(self, key)

Delete data elements or whole columns or rows.

Parameters

key: First key specifies row, (optional) second one the column. Columns can be specified by index or name, see index() for details. If all rows are selected, then the specified columns are removed from the table. Otherwise only data values are removed. If all columns are selected than entire rows of data values are removed. Otherwise only data values in the specified rows are removed.

Raises

Indexerror

If an invalid column was specified.

def array(self, row=None)

The table data as a ndarray.

Parameters

row : int or None
If specified, a 1D ndarray of that row will be returned.

Returns

data : 2D or 1D ndarray
If no row is specified, the data content of the entire table as a 2D ndarray (rows first). If a row is specified, a 1D ndarray of that row.
def data_frame(self)

The table data as a pandas DataFrame.

Returns

data : pandas.DataFrame
A pandas DataFrame of the whole table.
def dicts(self, raw_values=True, missing='-')

The table as a list of dictionaries.

Parameters

raw_values : bool
If True, use raw table values as values, else format the values and add unit string.
missing : str
String indicating non-existing data elements.

Returns

table : list of dict
For each row of the table a dictionary with header as key.
def dict(self)

The table as a dictionary.

Returns

table : dict
A dictionary with keys being the column headers and values the list of data elements of the corresponding column.
def append_data(self, data, column=None)

Append data elements to successive columns.

The current column is set behid the added columns.

Parameters

data : float, int, str, etc. or list thereof or list of list thereof or dict or list of dict
Data values to be appended to successive columns: - A single value is simply appened to the specified column of the table. - A 1D-list of values is appended to successive columns of the table starting with the specified column. - The columns of a 2D-list of values (second index) are appended to successive columns of the table starting with the specified column. - Values or list of values of a dictionary are added to the columns specified by the keys. Does not affect the current column. - The values of dictionaries in a list are appended to the columns specified by the keys. Does not affect the current column.
column : None, int, or str
The first column to which the data should be appended, if data does not specify columns. If None, append to the current column. See self.index() for more information on how to specify a column.
def append_data_column(self, data, column=None)

Append data elements to a column.

The current column is incremented by one.

Parameters

data : float, int, str, etc. or list thereof
Data values to be appended to a column.
column : None, int, or str
The column to which the data should be appended. If None, append to the current column. See self.index() for more information on how to specify a column.
def set_column(self, column)

Set the column where to add data.

Parameters

column : int or str
The column to which data elements should be appended. See self.index() for more information on how to specify a column.

Raises

Indexerror

If an invalid column was specified.

def fill_data(self)

Fill up all columns with missing data to have the same number of data elements.

def clear_data(self)

Clear content of the table but keep header.

def sort(self, columns, reverse=False)

Sort the table rows in place.

Parameters

columns : int or str or list of int or str
A column specifier or a list of column specifiers of the columns to be sorted.
reverse : boolean
If True sort in descending order.

Raises

Indexerror

If an invalid column was specified.

def statistics(self)

Descriptive statistics of each column.

def key_value(self, row, col, missing='-')

A data element returned as a key-value pair.

Parameters

row : int
Specifies the row from which the data element should be retrieved.
col : None, int, or str
A specification of a column. See self.index() for more information on how to specify a column.
missing : str
String indicating non-existing data elements.

Returns

key : str
Header label of the column
value : str
A textual representation of the data element according to the format of the column, followed by the unit of the column.
def hide(self, column)

Hide a column or a range of columns.

Hidden columns will not be printed out by the write() function.

Parameters

column : int or str
The column to be hidden. See self.index() for more information on how to specify a column.
def hide_all(self)

Hide all columns.

Hidden columns will not be printed out by the write() function.

def hide_empty_columns(self, missing=['na', 'NA', 'nan', 'NAN', '-'])

Hide all columns that do not contain data.

Hidden columns will not be printed out by the write() function.

Parameters

missing : list of str
Strings indicating missing data.
def show(self, column)

Show a column or a range of columns.

Undoes hiding of a column.

Parameters

column : int or str
The column to be shown. See self.index() for more information on how to specify a column.
def write(self,
fh=sys.stdout,
table_format=None,
delimiter=None,
unit_style=None,
column_numbers=None,
sections=None,
align_columns=None,
shrink_width=True,
missing='-',
center_columns=False,
latex_label_command='',
latex_merge_std=False)

Write the table to a file or stream.

Parameters

fh : filename or stream
If not a stream, the file with name fh is opened. If fh does not have an extension, the table_format is appended as an extension. Otherwise fh is used as a stream for writing.
table_format : None or str
The format to be used for output. One of 'out', 'dat', 'ascii', 'csv', 'rtai', 'md', 'tex', 'html'. If None or 'auto' then the format is set to the extension of the filename given by fh. If fh is a stream the format is set to 'dat'.
delimiter : str
String or character separating columns, if supported by the table_format. If None or 'auto' use the default for the specified table_format.
unit_style : None or str
  • None or 'auto': use default of the specified table_format.
  • 'row': write an extra row to the table header specifying the units of the columns.
  • 'header': add the units to the column headers.
  • 'none': do not specify the units.
column_numbers : str or None
Add a row specifying the column index: - 'index': indices are integers, first column is 0. - 'num': indices are integers, first column is 1. - 'aa': use 'a', 'b', 'c', …, 'z', 'aa', 'ab', … for indexing - 'aa': use 'A', 'B', 'C', …, 'Z', 'AA', 'AB', … for indexing - None or 'none': do not add a row with column indices TableData.column_numbering is a list with the supported styles.
sections : None or int
Number of section levels to be printed. If None or 'auto' use default of selected table_format.
align_columns : boolean
  • True: set width of column formats to make them align.
  • False: set width of column formats to 0 - no unnecessary spaces.
  • None or 'auto': Use default of the selected table_format.
shrink_width : boolean
If True disregard width specified by the format strings, such that columns can become narrower.
missing : str
Indicate missing data by this string.
center_columns : boolean
If True center all columns (markdown, html, and latex).
latex_label_command : str
LaTeX command for formatting header labels. E.g. 'textbf' for making the header labels bold.
latex_merge_std : str
Merge header of columns with standard deviations with previous column (LaTeX tables only).

Returns

file_name : str or None
The full name of the file into which the data were written.

Supported File Formats

dat: data text file

# info           reaction     
# size   weight  delay  jitter
# m      kg      ms     mm    
   2.34     123   98.7      23
  56.70    3457   54.3      45
   8.90      43   67.9     345

ascii: ascii-art table

|---------------------------------|
| info           | reaction       |
| size  | weight | delay | jitter |
| m     | kg     | ms    | mm     |
|-------|--------|-------|--------|
|  2.34 |    123 |  98.7 |     23 |
| 56.70 |   3457 |  54.3 |     45 |
|  8.90 |     43 |  67.9 |    345 |
|---------------------------------|

csv: comma separated values

size/m,weight/kg,delay/ms,jitter/mm
2.34,123,98.7,23
56.70,3457,54.3,45
8.90,43,67.9,345

rtai: rtai-style table

RTH| info         | reaction     
RTH| size | weight| delay| jitter
RTH| m    | kg    | ms   | mm    
RTD|  2.34|    123|  98.7|     23
RTD| 56.70|   3457|  54.3|     45
RTD|  8.90|     43|  67.9|    345

md: markdown

| size/m | weight/kg | delay/ms | jitter/mm |
|------:|-------:|------:|-------:|
|  2.34 |    123 |  98.7 |     23 |
| 56.70 |   3457 |  54.3 |     45 |
|  8.90 |     43 |  67.9 |    345 |

tex: latex tabular

\begin{tabular}{rrrr}
  \hline
  \multicolumn{2}{l}{info} & \multicolumn{2}{l}{reaction} \
  \multicolumn{1}{l}{size} & \multicolumn{1}{l}{weight} & \multicolumn{1}{l}{delay} & \multicolumn{1}{l}{jitter} \
  \multicolumn{1}{l}{m} & \multicolumn{1}{l}{kg} & \multicolumn{1}{l}{ms} & \multicolumn{1}{l}{mm} \
  \hline
  2.34 & 123 & 98.7 & 23 \
  56.70 & 3457 & 54.3 & 45 \
  8.90 & 43 & 67.9 & 345 \
  \hline
\end{tabular}

html: html

<table>
<thead>
  <tr class="header">
    <th align="left" colspan="2">info</th>
    <th align="left" colspan="2">reaction</th>
  </tr>
  <tr class="header">
    <th align="left">size</th>
    <th align="left">weight</th>
    <th align="left">delay</th>
    <th align="left">jitter</th>
  </tr>
  <tr class="header">
    <th align="left">m</th>
    <th align="left">kg</th>
    <th align="left">ms</th>
    <th align="left">mm</th>
  </tr>
</thead>
<tbody>
  <tr class"odd">
    <td align="right">2.34</td>
    <td align="right">123</td>
    <td align="right">98.7</td>
    <td align="right">23</td>
  </tr>
  <tr class"even">
    <td align="right">56.70</td>
    <td align="right">3457</td>
    <td align="right">54.3</td>
    <td align="right">45</td>
  </tr>
  <tr class"odd">
    <td align="right">8.90</td>
    <td align="right">43</td>
    <td align="right">67.9</td>
    <td align="right">345</td>
  </tr>
</tbody>
</table>
def write_file_stream(self, basename, file_name, **kwargs)

Write table to file or stream and return appropriate file name.

Parameters

basename : str or stream
If str, path and basename of file. file_name and an extension are appended. If stream, write table data into this stream.
file_name : str
Name of file that is appended to a base path or basename.

kwargs: Arguments passed on to TableData.write(). In particular, 'table_format' is used to the set the file extension that is appended to the returned file_name.

Returns

file_name : str
Path and full name of the written file in case of basename being a string. Otherwise, the file name and extension that should be appended to a base path.
def __str__(self)

Write table to a string.

def load(self, fh, missing=['na', 'NA', 'nan', 'NAN', '-'], stop=None)

Load table from file or stream.

File type and properties are automatically inferred.

Parameters

fh : str or stream
If not a stream, the file with name fh is opened for reading.
missing : str or list of str
Missing data are indicated by this string and are translated to np.nan.
stop : str or None
If the beginning of a line matches stop, then stop reading the file.

Raises

Filenotfounderror

If fh is a path that does not exist.

class IndentStream (stream, indent=4)

Filter an output stream and start each newline with a number of spaces.

Expand source code
class IndentStream(object):
    """Filter an output stream and start each newline with a number of
    spaces.
    """
    def __init__(self, stream, indent=4):
        self.stream = stream
        self.indent = indent
        self.pending = True

    def __getattr__(self, attr_name):
        return getattr(self.stream, attr_name)

    def write(self, data):
        if not data:
            return
        if self.pending:
            self.stream.write(' '*self.indent)
            self.pending = False
        substr = data.rstrip('\n')
        rn = len(data) - len(substr)
        if len(substr) > 0:
            self.stream.write(substr.replace('\n', '\n'+' '*self.indent))
        if rn > 0:
            self.stream.write('\n'*rn)
            self.pending = True

    def flush(self):
        self.stream.flush()

Methods

def write(self, data)
def flush(self)