Module audioio.audioloader
Loading data from audio files.
load_audio()
: loads a whole audio file at once.audio_metadata()
: read meta-data of an audio file.AudioLoader
: allow to read data from audio files in chunks.blocks()
: generator for blockwise processing of array data.unwrap()
unwraps clipped data that are folded into the available data range.
The read in data are always numpy arrays of floats ranging between -1 and 1. The arrays are 2-D arrays with first axis time and second axis channel, even for single channel data.
If an audio file cannot be loaded, you might need to install additional packages. See installation for further instructions.
For a demo run the module as:
python -m audioio.audioloader audiofile.wav
Expand source code
"""
Loading data from audio files.
- `load_audio()`: loads a whole audio file at once.
- `audio_metadata()`: read meta-data of an audio file.
- `AudioLoader`: allow to read data from audio files in chunks.
- `blocks()`: generator for blockwise processing of array data.
- `unwrap()` unwraps clipped data that are folded into the available data range.
The read in data are always numpy arrays of floats ranging between -1 and 1.
The arrays are 2-D arrays with first axis time and second axis channel,
even for single channel data.
If an audio file cannot be loaded, you might need to install additional packages.
See [installation](https://bendalab.github.io/audioio/installation)
for further instructions.
For a demo run the module as:
```
python -m audioio.audioloader audiofile.wav
```
"""
import warnings
import os.path
import numpy as np
from .audiomodules import *
from .wavemetadata import metadata_wave
def load_wave(filepath, verbose=0):
"""Load wav file using the wave module from pythons standard libray.
Documentation
-------------
https://docs.python.org/3.8/library/wave.html
Parameters
----------
filepath: string
The full path and name of the file to load.
verbose: int
Not used.
Returns
-------
data: array
All data traces as an 2-D numpy array, first dimension is time, second is channel
rate: float
The sampling rate of the data in Hertz.
Raises
------
ImportError
The wave module is not installed
*
Loading of the data failed
"""
if not audio_modules['wave']:
raise ImportError
wf = wave.open(filepath, 'r') # 'with' is not supported by wave
(nchannels, sampwidth, rate, nframes, comptype, compname) = wf.getparams()
buffer = wf.readframes(nframes)
factor = 2.0**(sampwidth*8-1)
if sampwidth == 1:
dtype = 'u1'
buffer = np.frombuffer(buffer, dtype=dtype).reshape(-1, nchannels)
data = buffer.astype('d')/factor - 1.0
else:
dtype = 'i%d' % sampwidth
buffer = np.frombuffer(buffer, dtype=dtype).reshape(-1, nchannels)
data = buffer.astype('d')/factor
wf.close()
return data, float(rate)
def load_ewave(filepath, verbose=0):
"""Load wav file using ewave module.
Documentation
-------------
https://github.com/melizalab/py-ewave
Parameters
----------
filepath: string
The full path and name of the file to load.
verbose: int
Not used.
Returns
-------
data: array
All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate: float
The sampling rate of the data in Hertz.
Raises
------
ImportError
The ewave module is not installed
*
Loading of the data failed
"""
if not audio_modules['ewave']:
raise ImportError
data = np.array([])
rate = 0.0
with ewave.open(filepath, 'r') as wf:
rate = wf.sampling_rate
buffer = wf.read()
data = ewave.rescale(buffer, 'float')
if len(data.shape) == 1:
data = np.reshape(data,(-1, 1))
return data, float(rate)
def load_wavfile(filepath, verbose=0):
"""Load wav file using scipy.io.wavfile.
Documentation
-------------
http://docs.scipy.org/doc/scipy/reference/io.html
Does not support blocked read.
Parameters
----------
filepath: string
The full path and name of the file to load.
verbose: int
If larger than zero show detailed error/warning messages.
Returns
-------
data: array
All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate: float
The sampling rate of the data in Hertz.
Raises
------
ImportError
The scipy.io module is not installed
*
Loading of the data failed
"""
if not audio_modules['scipy.io.wavfile']:
raise ImportError
if verbose < 2:
warnings.filterwarnings("ignore")
rate, data = wavfile.read(filepath)
if verbose < 2:
warnings.filterwarnings("always")
if data.dtype == np.uint8:
data = data / 128.0 - 1.0
elif np.issubdtype(data.dtype, np.signedinteger):
data = data / (2.0**(data.dtype.itemsize*8-1))
else:
data = data.astype(np.float64, copy=False)
if len(data.shape) == 1:
data = np.reshape(data,(-1, 1))
return data, float(rate)
def load_soundfile(filepath, verbose=0):
"""Load audio file using SoundFile (based on libsndfile).
Documentation
-------------
http://pysoundfile.readthedocs.org
http://www.mega-nerd.com/libsndfile
Parameters
----------
filepath: string
The full path and name of the file to load.
verbose: int
Not used.
Returns
-------
data: array
All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate: float
The sampling rate of the data in Hertz.
Raises
------
ImportError
The soundfile module is not installed.
*
Loading of the data failed.
"""
if not audio_modules['soundfile']:
raise ImportError
data = np.array([])
rate = 0.0
with soundfile.SoundFile(filepath, 'r') as sf:
rate = sf.samplerate
data = sf.read(frames=-1, dtype='float64', always_2d=True)
return data, float(rate)
def load_wavefile(filepath, verbose=0):
"""Load audio file using wavefile (based on libsndfile).
Documentation
-------------
https://github.com/vokimon/python-wavefile
Parameters
----------
filepath: string
The full path and name of the file to load.
verbose: int
Not used.
Returns
-------
data: array
All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate: float
The sampling rate of the data in Hertz.
Raises
------
ImportError
The wavefile module is not installed.
*
Loading of the data failed.
"""
if not audio_modules['wavefile']:
raise ImportError
rate, data = wavefile.load(filepath)
return data.astype(np.float64, copy=False).T, float(rate)
def load_audioread(filepath, verbose=0):
"""Load audio file using audioread.
Documentation
-------------
https://github.com/beetbox/audioread
Parameters
----------
filepath: string
The full path and name of the file to load.
verbose: int
Not used.
Returns
-------
data: array
All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate: float
The sampling rate of the data in Hertz.
Raises
------
ImportError
The audioread module is not installed.
*
Loading of the data failed.
"""
if not audio_modules['audioread']:
raise ImportError
data = np.array([])
rate = 0.0
with audioread.audio_open(filepath) as af:
rate = af.samplerate
data = np.zeros((int(np.ceil(af.samplerate*af.duration)), af.channels),
dtype="<i2")
index = 0
for buffer in af:
fulldata = np.frombuffer(buffer, dtype='<i2').reshape(-1, af.channels)
n = fulldata.shape[0]
if index + n > len(data):
n = len(fulldata) - index
if n <= 0:
break
data[index:index+n,:] = fulldata[:n,:]
index += n
return data/(2.0**15-1.0), float(rate)
audio_loader_funcs = (
('soundfile', load_soundfile),
('audioread', load_audioread),
('wave', load_wave),
('wavefile', load_wavefile),
('ewave', load_ewave),
('scipy.io.wavfile', load_wavfile)
)
"""List of implemented load functions.
Each element of the list is a tuple with the module's name and the load function.
"""
def load_audio(filepath, verbose=0):
"""Call this function to load all channels of audio data from a file.
This function tries different python modules to load the audio file.
Parameters
----------
filepath: string
The full path and name of the file to load.
verbose: int
If larger than zero show detailed error/warning messages.
Returns
-------
data: array
All data traces as an 2-D numpy array, even for single channel data.
First dimension is time, second is channel.
Data values range maximally between -1 and 1.
rate: float
The sampling rate of the data in Hertz.
Raises
------
ValueError
Empty `filepath`.
FileNotFoundError
`filepath` is not an existing file.
EOFError
File size of `filepath` is zero.
IOError
Failed to load data.
Examples
--------
```
import matplotlib.pyplot as plt
from audioio import load_audio
data, rate = load_audio('some/audio.wav')
plt.plot(np.arange(len(data))/rate, data[:,0])
plt.show()
```
"""
# check values:
if filepath is None or len(filepath) == 0:
raise ValueError('input argument filepath is empty string!')
if not os.path.isfile(filepath):
raise FileNotFoundError('file "%s" not found' % filepath)
if os.path.getsize(filepath) <= 0:
raise EOFError('file "%s" is empty (size=0)!' % filepath)
# load an audio file by trying various modules:
success = False
not_installed = []
for lib, load_file in audio_loader_funcs:
if not audio_modules[lib]:
if verbose > 1:
print('unable to load data from file "%s" using %s module: module not available' %
(filepath, lib))
not_installed.append(lib)
continue
try:
data, rate = load_file(filepath, verbose)
if len(data) > 0:
success = True
if verbose > 0:
print('loaded data from file "%s" using %s module' %
(filepath, lib))
if verbose > 1:
print(' sampling rate: %g Hz' % rate)
print(' channels : %d' % data.shape[1])
print(' data values : %d' % len(data))
break
except Exception as e:
pass
if not success:
need_install = ""
if len(not_installed) > 0:
need_install = " You may need to install one of the " + \
', '.join(not_installed) + " packages."
raise IOError('failed to load data from file "%s".%s' %
(filepath, need_install))
return data, rate
def audio_metadata(file, store_empty=False, first_only=False, verbose=0):
""" Read meta-data of an audio file.
Parameters
----------
file: string or file handle
The wave file.
store_empty: bool
If `False` do not add meta data with empty values.
first_only: bool
If `False` only store the first element of a list.
verbose: int
Verbosity level.
Returns
-------
meta_data: nested dict
Meta data contained in the audio file. Keys of the nested
dictionaries are always strings. If the corresponding
values are dictionaries, then the key is the section name
of the metadata contained in the dictionary. All other
types of values are values for the respective key. In
particular they are strings, or list of strings. But other
simple types like ints or floats are also allowed.
cues: list of dict
Cues contained in the wave file. Each item in the list provides
- 'id': Id of the cue.
- 'pos': Position of the cue in samples.
- 'length': Number of samples the cue covers (optional).
- 'repeats': How often the cue segment should be repeated (optional).
- 'label': Label of the cue (optional).
- 'note': Note on the cue (optional).
- 'text': Description of cue segment (optional).
"""
try:
return metadata_wave(file, store_empty, verbose)
except ValueError: # not a wave file
return {}, []
def flatten_metadata(md, keep_sections=False):
"""
"""
def flatten(cd, section):
df = {}
for k in cd:
if isinstance(cd[k], dict):
df.update(flatten(cd[k], section + k + '.'))
else:
if keep_sections:
df[section+k] = cd[k]
else:
df[k] = cd[k]
return df
return flatten(md, '')
def blocks(data, block_size, noverlap=0, start=0, stop=None):
"""Generator for blockwise processing of array data.
Parameters
----------
data: array
Data to loop over. First dimension is time.
block_size: int
Len of data blocks to be returned.
noverlap: int
Number of indices successive data points should overlap.
start: int
Optional first index from which on to return blocks of data.
stop: int
Optional last index until which to return blocks of data.
Yields
------
data: array
Successive slices of the input data.
Raises
------
ValueError
`noverlap` larger or equal to `block_size`.
Examples
--------
```
import numpy as np
from audioio import blocks
data = np.arange(20)
for x in blocks(data, 6, 2):
print(x)
```
results in
```text
[0 1 2 3 4 5]
[4 5 6 7 8 9]
[ 8 9 10 11 12 13]
[12 13 14 15 16 17]
[16 17 18 19]
```
Use it for processing long audio data, like computing a spectrogram with overlap:
```
from scipy.signal import spectrogram
from audioio import AudioLoader, blocks
nfft = 2048
with AudioLoader('some/audio.wav') as data:
for x in blocks(data, 100*nfft, nfft//2):
f, t, Sxx = spectrogram(x, fs=data.samplerate,
nperseg=nfft, noverlap=nfft//2)
```
"""
if noverlap >= block_size:
raise ValueError('noverlap=%d larger than block_size=%d' % (noverlap, block_size))
if stop is None:
stop = len(data)
m = block_size - noverlap
n = (stop-start-noverlap)//m
if n == 0:
yield data[start:stop]
else:
for k in range(n):
yield data[start+k*m:start+k*m+block_size]
if stop - start - (k*m+block_size) > 0:
yield data[start+(k+1)*m:]
def unwrap(data):
"""Fixes data that exceeded the -1 to 1 range.
If data that exceed the range from -1.0 to 1.0 are stored in a wav file,
they get wrapped around. This functions tries to undo this wrapping.
Parameters
----------
data: 1D or 2D ndarray
Data to be fixed.
Returns
-------
data: same as input data
The fixed data.
"""
if len(data.shape) > 1:
for c in range(data.shape[1]):
data[:,c] = unwrap(data[:,c])
else:
for k in range(20):
dd = (data[1:] < -0.8) & (np.diff(data) <= -1.0)
du = (data[1:] > 0.8) & (np.diff(data) >= 1.0)
if np.sum(dd) == 0 and np.sum(du) == 0:
break
data[1:][dd] += 2.0
data[1:][du] -= 2.0
return data
class BufferArray(object):
"""Random access to 2D data of which only a part is held in memory.
This is a base class for accessing large audio recordings either
from a file (class AudioLoader) or by computing it contents. The
BufferArray behaves like a single big ndarray with first dimension
indexing the frames and second dimension indexing the channels of
the audio data. Internally it only holds a part of the data in
memory.
Classes inheriting BufferArray just need to implement
```
self.load_buffer(offset, size, buffer)
```
This function needs to load the supplied 2-D `buffer` with `size`
frames of data starting at `offset`.
In the constructor or some kind of opening function, you need to
set the following member variables, followed by a call to
`_init_buffer()`:
```
self.samplerate # number of frames per second
self.channels # number of channels per frame
self.frames # total number of frames
self.shape = (self.frames, self.channels)
self.buffersize # number of frames the buffer should hold
self.backsize # number of frames kept for moving back
self._init_buffer()
```
Parameters
----------
verbose: int
If larger than zero show detailed error/warning messages.
Attributes
----------
samplerate: float
The sampling rate of the data in seconds.
channels: int
The number of channels.
frames: int
The number of frames. Same as `len()`.
shape: tuple
Frames and channels of the data.
offset: int
Index of first frame in the current buffer.
buffer: array of floats
The curently available data.
ampl_min: float
Minimum amplitude the data supports.
ampl_max: float
Maximum amplitude the data supports.
Methods
-------
len()
Number of frames.
__getitem__
Access data.
update_buffer()
Update the buffer for a range of frames.
load_buffer()
Load a range of frames into a buffer.
Notes
-----
Access via `__getitem__` or `__next__` is slow!
Even worse, using numpy functions on this class first converts
it to a numpy array - that is something we actually do not want!
We should subclass directly from numpy.ndarray .
For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html
When subclassing, there is an offset argument, that might help to
speed up `__getitem__` .
"""
def __init__(self, verbose=0):
self.samplerate = 0.0
self.channels = 0
self.frames = 0
self.shape = (0, 0)
self.ampl_min = -1.0
self.ampl_max = +1.0
self.offset = 0
self.buffersize = 0
self.backsize = 0
self.buffer = np.zeros((0,0))
self.verbose = verbose
def __enter__(self):
return self
def __exit__(self, ex_type, ex_value, tb):
self.__del__()
return (ex_value is None)
def __len__(self):
return self.frames
def __iter__(self):
self.iter_counter = -1
return self
def __next__(self):
self.iter_counter += 1
if self.iter_counter >= self.frames:
raise StopIteration
else:
self.update_buffer(self.iter_counter, self.iter_counter+1)
return self.buffer[self.iter_counter-self.offset,:]
def next(self): # python 2
return self.__next__()
def __getitem__(self, key):
"""Access data of the audio file."""
if type(key) is tuple:
index = key[0]
else:
index = key
if isinstance(index, slice):
start = index.start
stop = index.stop
step = index.step
if start is None:
start=0
else:
start = int(start)
if start < 0:
start += len(self)
if stop is None:
stop = len(self)
else:
stop = int(stop)
if stop < 0:
stop += len(self)
if stop > self.frames:
stop = self.frames
if step is None:
step = 1
else:
step = int(step)
self.update_buffer(start, stop)
newindex = slice(start-self.offset, stop-self.offset, step)
elif hasattr(index, '__len__'):
index = [inx if inx >= 0 else inx+len(self) for inx in index]
start = min(index)
stop = max(index)
self.update_buffer(start, stop+1)
newindex = [inx-self.offset for inx in index]
else:
if index > self.frames:
raise IndexError
index = int(index)
if index < 0:
index += len(self)
self.update_buffer(index, index+1)
newindex = index-self.offset
if type(key) is tuple:
newkey = (newindex,) + key[1:]
return self.buffer[newkey]
else:
return self.buffer[newindex]
def _init_buffer(self):
"""Allocate a buffer with zero frames but all the channels."""
self.buffer = np.empty((0, self.channels))
self.offset = 0
def update_buffer(self, start, stop):
"""Make sure that the buffer contains data between start and stop.
Parameters
----------
start: int
Index of the first frame for the buffer.
stop: int
Index of the last frame for the buffer.
"""
if start < self.offset or stop > self.offset + self.buffer.shape[0]:
offset, size = self._read_indices(start, stop)
r_offset, r_size = self._recycle_buffer(offset, size)
self.offset = offset
# load buffer content from file, this is backend specific:
self.load_buffer(r_offset, r_size,
self.buffer[r_offset-self.offset:
r_offset+r_size-self.offset,:])
if self.verbose > 1:
print(' loaded %d frames from %d up to %d'
% (self.buffer.shape[0], self.offset,
self.offset+self.buffer.shape[0]))
def _read_indices(self, start, stop):
"""Compute position and size for next read from file.
This takes buffersize and backsize into account.
Parameters
----------
start: int
Index of the first requested frame.
stop: int
Index of the last requested frame.
Returns
-------
offset: int
Frame index for the first frame in the buffer.
size: int
Number of frames the buffer should hold.
"""
offset = start
size = stop - start
if size < self.buffersize:
back = self.backsize
if self.buffersize - size < back:
back = self.buffersize - size
offset -= back
size = self.buffersize
if offset < 0:
offset = 0
if offset + size > self.frames:
offset = self.frames - size
if offset < 0:
offset = 0
size = self.frames - offset
if self.verbose > 2:
print(' request %6d frames at %d-%d' % (size, offset, offset+size))
return offset, size
def _recycle_buffer(self, offset, size):
"""Recycle buffer contents and return indices for data to be loaded from file.
Move already existing parts of the buffer to their new position (as
returned by _read_indices() ) and return position and size of
data chunk that still needs to be loaded from file.
Parameters
----------
offset: int
Frame index for the first frame in the buffer.
size: int
Number of frames the buffer should hold.
Returns
-------
r_offset: int
First frame to be read from file.
r_size: int
Number of frames to be read from file.
"""
def allocate_buffer(size):
"""Make sure the buffer has the right size."""
if size != self.buffer.shape[0]:
self.buffer = np.empty((size, self.channels))
r_offset = offset
r_size = size
if ( offset >= self.offset and
offset < self.offset + self.buffer.shape[0] ):
i = self.offset + self.buffer.shape[0] - offset
n = i
if n > size:
n = size
m = self.buffer.shape[0]
buffer = self.buffer[-i:m-i+n,:]
allocate_buffer(size)
self.buffer[:n,:] = buffer
r_offset += n
r_size -= n
if self.verbose > 2:
print(' recycle %6d frames from %d-%d of the old %d-sized buffer to the front at %d-%d (%d-%d in buffer)'
% (n, self.offset+m-i, self.offset+m-i+n, m, offset, offset+n, 0, n))
elif ( offset + size > self.offset and
offset + size <= self.offset + self.buffer.shape[0] ):
n = offset + size - self.offset
m = self.buffer.shape[0]
buffer = self.buffer[:n,:]
allocate_buffer(size)
self.buffer[-n:,:] = buffer
r_size -= n
if self.verbose > 2:
print(' recycle %6d frames from %d-%d of the old %d-sized buffer to the end at %d-%d (%d-%d in buffer)'
% (n, self.offset, self.offset+n, m, offset+size-n, offset+size, size-n, size))
else:
allocate_buffer(size)
return r_offset, r_size
class AudioLoader(BufferArray):
"""Buffered reading of audio data for random access of the data in the file.
The class allows for reading very large audio files that do not fit into memory.
An AudioLoader instance can be used like a huge read-only numpy array, i.e.
```
data = AudioLoader('path/to/audio/file.wav')
x = data[10000:20000,0]
```
The first index specifies the frame, the second one the channel.
Behind the scenes AudioLoader tries to open the audio file with all available
audio modules until it succeeds (first line). It then reads data from the file
as necessary for the requested data (second line).
Reading sequentially through the file is always possible. Some
modules, however, (e.g. audioread, needed for mp3 files) can only
read forward. If previous data are requested, then the file is read
from the beginning. This slows down access to previous data
considerably. Use the `backsize` argument of the open function to
make sure some data are loaded into the buffer before the requested
frame. Then a subsequent access to the data within backsize `seconds`
before that frame can still be handled without the need to reread
the file from the beginning.
Usage
-----
With context management:
```
import audioio as aio
with aio.AudioLoader(filepath, 60.0, 10.0) as data:
# do something with the content of the file:
x = data[0:10000]
y = data[10000:20000]
z = x + y
```
For using a specific audio module, here the audioread module:
```
data = aio.AudioLoader()
with data.open_audioread(filepath, 60.0, 10.0):
# do something ...
```
Use `blocks()` for sequential, blockwise reading and processing:
```
from scipy.signal import spectrogram
nfft = 2048
with aio.AudioLoader('some/audio.wav') as data:
for x in data.blocks(100*nfft, nfft//2):
f, t, Sxx = spectrogram(x, fs=data.samplerate,
nperseg=nfft, noverlap=nfft//2)
```
For loop iterates over single frames (1-D arrays containing samples for each channel):
```
with aio.AudioLoader('some/audio.wav') as data:
for x in data:
print(x)
```
Traditional open and close:
```
data = aio.AudioLoader(filepath, 60.0)
x = data[:,:] # read the whole file
data.close()
```
this is the same as:
```
data = aio.AudioLoader()
data.open(filepath, 60.0)
...
```
Parameters
----------
filepath: string
Name of the file.
buffersize: float
Size of internal buffer in seconds.
backsize: float
Part of the buffer to be loaded before the requested start index in seconds.
verbose: int
If larger than zero show detailed error/warning messages.
Attributes
----------
filepath: str
Path and name of the file.
samplerate: float
The sampling rate of the data in seconds.
channels: int
The number of channels.
frames: int
The number of frames in the file. Same as `len()`.
shape: tuple
Frames and channels of the data.
offset: int
Index of first frame in the current buffer.
buffer: array of floats
The curently available data from the file.
ampl_min: float
Minimum amplitude the file format supports. Always -1.0.
ampl_max: float
Maximum amplitude the file format supports. Always +1.0.
Methods
-------
len()
Number of frames.
open()
Open an audio file by trying available audio modules.
open_*()
Open an audio file with the respective audio module.
__getitem__
Access data of the audio file.
update_buffer()
Update the internal buffer for a range of frames.
load_buffer()
Load a range of frames into a buffer.
blocks()
Generator for blockwise processing of AudioLoader data.
metadata()
Meta-data stored along with the audio data.
close()
Close the file.
Notes
-----
Access via `__getitem__` or `__next__` is slow!
Even worse, using numpy functions on this class first converts
it to a numpy array - that is something we actually do not want!
We should subclass directly from numpy.ndarray .
For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html
When subclassing, there is an offset argument, that might help to
speed up `__getitem__` .
"""
def __init__(self, filepath=None, buffersize=10.0, backsize=0.0, verbose=0):
super().__init__(verbose)
self.filepath = None
self.sf = None
self.close = self._close
if filepath is not None:
self.open(filepath, buffersize, backsize, verbose)
def _close(self):
pass
def __del__(self):
self.close()
def blocks(self, block_size, noverlap=0, start=0, stop=None):
"""Generator for blockwise processing of AudioLoader data.
Parameters
----------
block_size: int
Len of data blocks to be returned.
noverlap: int
Number of indices successive data points should overlap.
start: int
Optional first index from which on to return blocks of data.
stop: int
Optional last index until which to return blocks of data.
Yields
------
data: array
Successive slices of the data managed by AudioLoader.
Raises
------
ValueError
`noverlap` larger or equal to `block_size`.
Examples
--------
Use it for processing long audio data, like computing a spectrogram with overlap:
```
from scipy.signal import spectrogram
from audioio import AudioLoader, blocks
nfft = 2048
with AudioLoader('some/audio.wav') as data:
for x in data.blocks(100*nfft, nfft//2):
f, t, Sxx = spectrogram(x, fs=data.samplerate,
nperseg=nfft, noverlap=nfft//2)
```
"""
return blocks(self, block_size, noverlap, start, stop)
def metadata(self, store_empty=False, first_only=False):
"""Read meta-data of the audio file.
This default implementation tries to get wave file
metadata. If this fails it does nothing.
Parameters
----------
store_empty: bool
If `False` do not add meta data with empty values.
first_only: bool
If `False` only store the first element of a list.
Returns
-------
meta_data: nested dict
Meta data contained in the audio file. Keys of the nested
dictionaries are always strings. If the corresponding
values are dictionaries, then the key is the section name
of the metadata contained in the dictionary. All other
types of values are values for the respective key. In
particular they are strings, or list of strings. But other
simple types like ints or floats are also allowed.
cues: list of dict
Cues contained in the wave file. Each item in the list provides
- 'id': Id of the cue.
- 'pos': Position of the cue in samples.
- 'length': Number of samples the cue covers (optional).
- 'repeats': How often the cue segment should be repeated (optional).
- 'label': Label of the cue (optional).
- 'note': Note on the cue (optional).
- 'text': Description of cue segment (optional).
"""
try:
return metadata_wave(self.filepath, store_empty, self.verbose)
except ValueError:
return {}, []
# wave interface:
def open_wave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0):
"""Open audio file for reading using the wave module.
Note: we assume that setpos() and tell() use integer numbers!
Parameters
----------
filepath: string
Name of the file.
buffersize: float
Size of internal buffer in seconds.
backsize: float
Part of the buffer to be loaded before the requested start index in seconds.
verbose: int
If larger than zero show detailed error/warning messages.
Raises
------
ImportError
The wave module is not installed
"""
self.verbose = verbose
if self.verbose > 0:
print('open_wave(filepath) with filepath=%s' % filepath)
if not audio_modules['wave']:
self.samplerate = 0.0
self.channels = 0
self.frames = 0
self.shape = (0, 0)
self.offset = 0
raise ImportError
if self.sf is not None:
self._close_wave()
self.sf = wave.open(filepath, 'r')
self.filepath = filepath
self.samplerate = float(self.sf.getframerate())
sampwidth = self.sf.getsampwidth()
if sampwidth == 1:
self.dtype = 'u1'
else:
self.dtype = 'i%d' % sampwidth
self.factor = 1.0/(2.0**(sampwidth*8-1))
self.channels = self.sf.getnchannels()
self.frames = self.sf.getnframes()
self.shape = (self.frames, self.channels)
self.buffersize = int(buffersize*self.samplerate)
self.backsize = int(backsize*self.samplerate)
self._init_buffer()
self.close = self._close_wave
self.load_buffer = self._load_buffer_wave
self.metadata = self._metadata_wave
# read 1 frame to determine the unit of the position values:
self.p0 = self.sf.tell()
self.sf.readframes(1)
self.pfac = self.sf.tell() - self.p0
self.sf.setpos(self.p0)
return self
def _close_wave(self):
"""Close the audio file using the wave module. """
if self.sf is not None:
self.sf.close()
self.sf = None
def _load_buffer_wave(self, r_offset, r_size, buffer):
"""Load new data from file using the wave module.
Parameters
----------
r_offset: int
First frame to be read from file.
r_size: int
Number of frames to be read from file.
buffer: ndarray
Buffer where to store the loaded data.
"""
self.sf.setpos(r_offset*self.pfac + self.p0)
fbuffer = self.sf.readframes(r_size)
fbuffer = np.frombuffer(fbuffer, dtype=self.dtype).reshape((-1, self.channels))
if self.dtype[0] == 'u':
buffer[:, :] = fbuffer * self.factor - 1.0
else:
buffer[:, :] = fbuffer * self.factor
def _metadata_wave(self, store_empty=False, first_only=False):
""" Read meta-data of a wave file.
See also
--------
metadata()
"""
return metadata_wave(self.filepath, store_empty, self.verbose)
# ewave interface:
def open_ewave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0):
"""Open audio file for reading using the ewave module.
Parameters
----------
filepath: string
Name of the file.
buffersize: float
Size of internal buffer in seconds.
backsize: float
Part of the buffer to be loaded before the requested start index in seconds.
verbose: int
If larger than zero show detailed error/warning messages.
Raises
------
ImportError
The ewave module is not installed.
"""
self.verbose = verbose
if self.verbose > 0:
print('open_ewave(filepath) with filepath=%s' % filepath)
if not audio_modules['ewave']:
self.samplerate = 0.0
self.channels = 0
self.frames = 0
self.shape = (0, 0)
self.offset = 0
raise ImportError
if self.sf is not None:
self._close_ewave()
self.sf = ewave.open(filepath, 'r')
self.filepath = filepath
self.samplerate = float(self.sf.sampling_rate)
self.channels = self.sf.nchannels
self.frames = self.sf.nframes
self.shape = (self.frames, self.channels)
self.buffersize = int(buffersize*self.samplerate)
self.backsize = int(backsize*self.samplerate)
self._init_buffer()
self.close = self._close_ewave
self.load_buffer = self._load_buffer_ewave
self.metadata = self._metadata_wave
return self
def _close_ewave(self):
"""Close the audio file using the ewave module. """
if self.sf is not None:
del self.sf
self.sf = None
def _load_buffer_ewave(self, r_offset, r_size, buffer):
"""Load new data from file using the wave module.
Parameters
----------
r_offset: int
First frame to be read from file.
r_size: int
Number of frames to be read from file.
buffer: ndarray
Buffer where to store the loaded data.
"""
fbuffer = self.sf.read(frames=r_size, offset=r_offset, memmap='r')
fbuffer = ewave.rescale(fbuffer, 'float')
if len(fbuffer.shape) == 1:
fbuffer = np.reshape(fbuffer,(-1, 1))
buffer[:,:] = fbuffer
# soundfile interface:
def open_soundfile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0):
"""Open audio file for reading using the SoundFile module.
Parameters
----------
filepath: string
Name of the file.
buffersize: float
Size of internal buffer in seconds.
backsize: float
Part of the buffer to be loaded before the requested start index in seconds.
verbose: int
If larger than zero show detailed error/warning messages.
Raises
------
ImportError
The SoundFile module is not installed
"""
self.verbose = verbose
if self.verbose > 0:
print('open_soundfile(filepath) with filepath=%s' % filepath)
if not audio_modules['soundfile']:
self.samplerate = 0.0
self.channels = 0
self.frames = 0
self.shape = (0, 0)
self.offset = 0
raise ImportError
if self.sf is not None:
self._close_soundfile()
self.sf = soundfile.SoundFile(filepath, 'r')
self.filepath = filepath
self.samplerate = float(self.sf.samplerate)
self.channels = self.sf.channels
self.frames = 0
if self.sf.seekable():
self.frames = self.sf.seek(0, soundfile.SEEK_END)
self.sf.seek(0, soundfile.SEEK_SET)
# TODO: if not seekable, we cannot handle that file!
self.shape = (self.frames, self.channels)
self.buffersize = int(buffersize*self.samplerate)
self.backsize = int(backsize*self.samplerate)
self._init_buffer()
self.close = self._close_soundfile
self.load_buffer = self._load_buffer_soundfile
return self
def _close_soundfile(self):
"""Close the audio file using the SoundFile module. """
if self.sf is not None:
self.sf.close()
self.sf = None
def _load_buffer_soundfile(self, r_offset, r_size, buffer):
"""Load new data from file using the wave module.
Parameters
----------
r_offset: int
First frame to be read from file.
r_size: int
Number of frames to be read from file.
buffer: ndarray
Buffer where to store the loaded data.
"""
self.sf.seek(r_offset, soundfile.SEEK_SET)
buffer[:, :] = self.sf.read(r_size, always_2d=True)
# wavefile interface:
def open_wavefile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0):
"""Open audio file for reading using the wavefile module.
Parameters
----------
filepath: string
Name of the file.
buffersize: float
Size of internal buffer in seconds.
backsize: float
Part of the buffer to be loaded before the requested start index in seconds.
verbose: int
If larger than zero show detailed error/warning messages.
Raises
------
ImportError
The wavefile module is not installed
"""
self.verbose = verbose
if self.verbose > 0:
print('open_wavefile(filepath) with filepath=%s' % filepath)
if not audio_modules['wavefile']:
self.samplerate = 0.0
self.channels = 0
self.frames = 0
self.shape = (0, 0)
self.offset = 0
raise ImportError
if self.sf is not None:
self._close_wavefile()
self.sf = wavefile.WaveReader(filepath)
self.filepath = filepath
self.samplerate = float(self.sf.samplerate)
self.channels = self.sf.channels
self.frames = self.sf.frames
self.shape = (self.frames, self.channels)
self.buffersize = int(buffersize*self.samplerate)
self.backsize = int(backsize*self.samplerate)
self._init_buffer()
self.close = self._close_wavefile
self.load_buffer = self._load_buffer_wavefile
return self
def _close_wavefile(self):
"""Close the audio file using the wavefile module. """
if self.sf is not None:
self.sf.close()
self.sf = None
def _load_buffer_wavefile(self, r_offset, r_size, buffer):
"""Load new data from file using the wave module.
Parameters
----------
r_offset: int
First frame to be read from file.
r_size: int
Number of frames to be read from file.
buffer: ndarray
Buffer where to store the loaded data.
"""
self.sf.seek(r_offset, wavefile.Seek.SET)
fbuffer = self.sf.buffer(r_size, dtype=self.buffer.dtype)
self.sf.read(fbuffer)
buffer[:,:] = fbuffer.T
# audioread interface:
def open_audioread(self, filepath, buffersize=10.0, backsize=0.0, verbose=0):
"""Open audio file for reading using the audioread module.
Note, that audioread can only read forward, therefore random and
backward access is really slow.
Parameters
----------
filepath: string
Name of the file.
buffersize: float
Size of internal buffer in seconds.
backsize: float
Part of the buffer to be loaded before the requested start index in seconds.
verbose: int
If larger than zero show detailed error/warning messages.
Raises
------
ImportError
The audioread module is not installed
"""
self.verbose = verbose
if self.verbose > 0:
print('open_audio_read(filepath) with filepath=%s' % filepath)
if not audio_modules['audioread']:
self.samplerate = 0.0
self.channels = 0
self.frames = 0
self.shape = (0, 0)
self.offset = 0
raise ImportError
if self.sf is not None:
self._close_audioread()
self.sf = audioread.audio_open(filepath)
self.filepath = filepath
self.samplerate = float(self.sf.samplerate)
self.channels = self.sf.channels
self.frames = int(np.ceil(self.samplerate*self.sf.duration))
self.shape = (self.frames, self.channels)
self.buffersize = int(buffersize*self.samplerate)
self.backsize = int(backsize*self.samplerate)
self._init_buffer()
self.read_buffer = np.zeros((0,0))
self.read_offset = 0
self.close = self._close_audioread
self.load_buffer = self._load_buffer_audioread
self.filepath = filepath
self.sf_iter = self.sf.__iter__()
return self
def _close_audioread(self):
"""Close the audio file using the audioread module. """
if self.sf is not None:
self.sf.__exit__(None, None, None)
self.sf = None
def _load_buffer_audioread(self, r_offset, r_size, buffer):
"""Load new data from file using the wave module.
audioread can only iterate through a file once and in blocksizes that are
given by audioread. Therefore we keep yet another buffer: `self.read_buffer`
at file offset `self.read_offset` containing whatever audioread returned.
Parameters
----------
r_offset: int
First frame to be read from file.
r_size: int
Number of frames to be read from file.
buffer: ndarray
Buffer where to store the loaded data.
"""
b_offset = 0
if ( self.read_offset + self.read_buffer.shape[0] >= r_offset + r_size
and self.read_offset < r_offset + r_size ):
# read_buffer overlaps at the end of the requested interval:
i = 0
n = r_offset + r_size - self.read_offset
if n > r_size:
i += n - r_size
n = r_size
buffer[self.read_offset+i-r_offset:self.read_offset+i+n-r_offset,:] = self.read_buffer[i:i+n,:] / (2.0**15-1.0)
if self.verbose > 2:
print(' recycle %6d frames from the front of the read buffer at %d-%d (%d-%d in buffer)'
% (n, self.read_offset, self.read_offset+n, self.read_offset-self.offset, self.read_offset-self.offset+n))
r_size -= n
if r_size <= 0:
return
# go back to beginning of file:
if r_offset < self.read_offset:
if self.verbose > 2:
print(' rewind')
self._close_audioread()
self.sf = audioread.audio_open(self.filepath)
self.sf_iter = self.sf.__iter__()
self.read_buffer = np.zeros((0,0))
self.read_offset = 0
# read to position:
while self.read_offset + self.read_buffer.shape[0] < r_offset:
self.read_offset += self.read_buffer.shape[0]
try:
if hasattr(self.sf_iter, 'next'):
fbuffer = self.sf_iter.next()
else:
fbuffer = next(self.sf_iter)
except StopIteration:
self.read_buffer = np.zeros((0,0))
buffer[:,:] = 0.0
if self.verbose > 1:
print(' caught StopIteration, padded buffer with %d zeros' % r_size)
break
self.read_buffer = np.frombuffer(fbuffer, dtype='<i2').reshape(-1, self.channels)
if self.verbose > 2:
print(' read forward by %d frames' % self.read_buffer.shape[0])
# recycle file data:
if ( self.read_offset + self.read_buffer.shape[0] > r_offset
and self.read_offset <= r_offset ):
i = r_offset - self.read_offset
n = self.read_offset + self.read_buffer.shape[0] - r_offset
if n > r_size:
n = r_size
buffer[:n,:] = self.read_buffer[i:i+n,:] / (2.0**15-1.0)
if self.verbose > 2:
print(' recycle %6d frames from the end of the read buffer at %d-%d to %d-%d (%d-%d in buffer)'
% (n, self.read_offset, self.read_offset + self.read_buffer.shape[0],
r_offset, r_offset+n, r_offset-self.offset, r_offset+n-self.offset))
b_offset += n
r_offset += n
r_size -= n
# read data:
if self.verbose > 2 and r_size > 0:
print(' read %6d frames at %d-%d (%d-%d in buffer)'
% (r_size, r_offset, r_offset+r_size, r_offset-self.offset, r_offset+r_size-self.offset))
while r_size > 0:
self.read_offset += self.read_buffer.shape[0]
try:
if hasattr(self.sf_iter, 'next'):
fbuffer = self.sf_iter.next()
else:
fbuffer = next(self.sf_iter)
except StopIteration:
self.read_buffer = np.zeros((0,0))
buffer[b_offset:,:] = 0.0
if self.verbose > 1:
print(' caught StopIteration, padded buffer with %d zeros' % r_size)
break
self.read_buffer = np.frombuffer(fbuffer, dtype='<i2').reshape(-1, self.channels)
n = self.read_buffer.shape[0]
if n > r_size:
n = r_size
if n > 0:
buffer[b_offset:b_offset+n,:] = self.read_buffer[:n,:] / (2.0**15-1.0)
if self.verbose > 2:
print(' read %6d frames to %d-%d (%d-%d in buffer)'
% (n, r_offset, r_offset+n, r_offset-self.offset, r_offset+n-self.offset))
b_offset += n
r_offset += n
r_size -= n
def open(self, filepath, buffersize=10.0, backsize=0.0, verbose=0):
"""Open audio file for reading.
Parameters
----------
filepath: string
Name of the file.
buffersize: float
Size of internal buffer in seconds.
backsize: float
Part of the buffer to be loaded before the requested start index in seconds.
verbose: int
If larger than zero show detailed error/warning messages.
Raises
------
ValueError
Empty `filepath`.
FileNotFoundError
`filepath` is not an existing file.
EOFError
File size of `filepath` is zero.
IOError
Failed to load data.
"""
self.buffer = np.array([])
self.samplerate = 0.0
if len(filepath) == 0:
raise ValueError('input argument filepath is empty string!')
if not os.path.isfile(filepath):
raise FileNotFoundError('file "%s" not found' % filepath)
if os.path.getsize(filepath) <= 0:
raise EOFError('file "%s" is empty (size=0)!' % filepath)
# list of implemented open functions:
audio_open = [
['soundfile', self.open_soundfile],
['audioread', self.open_audioread],
['wave', self.open_wave],
['wavefile', self.open_wavefile],
['ewave', self.open_ewave]
]
# open an audio file by trying various modules:
success = False
not_installed = []
for lib, open_file in audio_open:
if not audio_modules[lib]:
if verbose > 1:
print('failed to load data from file "%s" using %s module' %
(filepath, lib))
not_installed.append(lib)
continue
try:
open_file(filepath, buffersize, backsize, verbose-1)
if self.frames > 0:
success = True
if verbose > 0:
print('opened audio file "%s" using %s' % (filepath, lib))
if verbose > 1:
print(' sampling rate: %g Hz' % self.samplerate)
print(' data values : %d' % self.frames)
break
except Exception as e:
pass
if not success:
need_install = ""
if len(not_installed) > 0:
need_install = " You may need to install one of the " + \
', '.join(not_installed) + " packages."
raise IOError('failed to load data from file "%s".%s' %
(filepath, need_install))
return self
def demo(file_path, plot):
"""Demo of the audioloader functions.
Parameters
----------
file_path: string
File path of an audio file.
plot: bool
If True also plot the loaded data.
"""
print('')
print("try load_audio:")
full_data, rate = load_audio(file_path, 1)
if plot:
plt.plot(np.arange(len(full_data))/rate, full_data[:,0])
plt.show()
if audio_modules['soundfile'] and audio_modules['audioread']:
print('')
print("cross check:")
data1, rate1 = load_soundfile(file_path)
data2, rate2 = load_audioread(file_path)
n = min((len(data1), len(data2)))
print("rms difference is %g" % np.std(data1[:n]-data2[:n]))
if plot:
plt.plot(np.arange(len(data1))/rate1, data1[:,0])
plt.plot(np.arange(len(data2))/rate2, data2[:,0])
plt.show()
print('')
print("try AudioLoader:")
with AudioLoader(file_path, 4.0, 1.0, 1) as data:
print('samplerate: %g' % data.samplerate)
print('channels: %d %d' % (data.channels, data.shape[1]))
print('frames: %d %d' % (len(data), data.shape[0]))
nframes = int(1.5*data.samplerate)
# check access:
print('check random single frame access')
for inx in np.random.randint(0, len(data), 1000):
if np.any(np.abs(full_data[inx] - data[inx]) > 2.0**(-14)):
print('single random frame access failed', inx, full_data[inx], data[inx])
print('check random frame slice access')
for inx in np.random.randint(0, len(data)-nframes, 1000):
if np.any(np.abs(full_data[inx:inx+nframes] - data[inx:inx+nframes]) > 2.0**(-14)):
print('random frame slice access failed', inx)
print('check frame slice access forward')
for inx in range(0, len(data)-nframes, 10):
if np.any(np.abs(full_data[inx:inx+nframes] - data[inx:inx+nframes]) > 2.0**(-14)):
print('frame slice access forward failed', inx)
print('check frame slice access backward')
for inx in range(len(data)-nframes, 0, -10):
if np.any(np.abs(full_data[inx:inx+nframes] - data[inx:inx+nframes]) > 2.0**(-14)):
print('frame slice access backward failed', inx)
# forward:
for i in range(0, len(data), nframes):
print('forward %d-%d' % (i, i+nframes))
x = data[i:i+nframes,0]
if plot:
plt.plot((i+np.arange(len(x)))/rate, x)
plt.show()
# and backwards:
for i in reversed(range(0, len(data), nframes)):
print('backward %d-%d' % (i, i+nframes))
x = data[i:i+nframes,0]
if plot:
plt.plot((i+np.arange(len(x)))/rate, x)
plt.show()
def main(args):
"""Call demo with command line arguments.
Parameters
----------
args: list of strings
Command line arguments as provided by sys.argv
"""
print("Checking audioloader module ...")
help = False
plot = False
file_path = None
mod = False
for arg in args[1:]:
if mod:
if not select_module(arg):
print('can not select module %s that is not installed' % arg)
return
mod = False
elif arg == '-h':
help = True
break
elif arg == '-p':
plot = True
elif arg == '-m':
mod = True
else:
file_path = arg
break
if help:
print('')
print('Usage:')
print(' python -m audioio.audioloader [-m <module>] [-p] <audio/file.wav>')
print(' -m: audio module to be used')
print(' -p: plot loaded data')
return
if plot:
import matplotlib.pyplot as plt
demo(file_path, plot)
if __name__ == "__main__":
import sys
main(sys.argv)
Global variables
var audio_loader_funcs
-
List of implemented load functions.
Each element of the list is a tuple with the module's name and the load function.
Functions
def main(args)
-
Call demo with command line arguments.
Parameters
args
:list
ofstrings
- Command line arguments as provided by sys.argv
Expand source code
def main(args): """Call demo with command line arguments. Parameters ---------- args: list of strings Command line arguments as provided by sys.argv """ print("Checking audioloader module ...") help = False plot = False file_path = None mod = False for arg in args[1:]: if mod: if not select_module(arg): print('can not select module %s that is not installed' % arg) return mod = False elif arg == '-h': help = True break elif arg == '-p': plot = True elif arg == '-m': mod = True else: file_path = arg break if help: print('') print('Usage:') print(' python -m audioio.audioloader [-m <module>] [-p] <audio/file.wav>') print(' -m: audio module to be used') print(' -p: plot loaded data') return if plot: import matplotlib.pyplot as plt demo(file_path, plot)
def load_wave(filepath, verbose=0)
-
Load wav file using the wave module from pythons standard libray.
Documentation
https://docs.python.org/3.8/library/wave.html
Parameters
filepath
:string
- The full path and name of the file to load.
verbose
:int
- Not used.
Returns
data
:array
- All data traces as an 2-D numpy array, first dimension is time, second is channel
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The wave module is not installed
* Loading of the data failed
Expand source code
def load_wave(filepath, verbose=0): """Load wav file using the wave module from pythons standard libray. Documentation ------------- https://docs.python.org/3.8/library/wave.html Parameters ---------- filepath: string The full path and name of the file to load. verbose: int Not used. Returns ------- data: array All data traces as an 2-D numpy array, first dimension is time, second is channel rate: float The sampling rate of the data in Hertz. Raises ------ ImportError The wave module is not installed * Loading of the data failed """ if not audio_modules['wave']: raise ImportError wf = wave.open(filepath, 'r') # 'with' is not supported by wave (nchannels, sampwidth, rate, nframes, comptype, compname) = wf.getparams() buffer = wf.readframes(nframes) factor = 2.0**(sampwidth*8-1) if sampwidth == 1: dtype = 'u1' buffer = np.frombuffer(buffer, dtype=dtype).reshape(-1, nchannels) data = buffer.astype('d')/factor - 1.0 else: dtype = 'i%d' % sampwidth buffer = np.frombuffer(buffer, dtype=dtype).reshape(-1, nchannels) data = buffer.astype('d')/factor wf.close() return data, float(rate)
def load_ewave(filepath, verbose=0)
-
Load wav file using ewave module.
Documentation
https://github.com/melizalab/py-ewave
Parameters
filepath
:string
- The full path and name of the file to load.
verbose
:int
- Not used.
Returns
data
:array
- All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The ewave module is not installed
* Loading of the data failed
Expand source code
def load_ewave(filepath, verbose=0): """Load wav file using ewave module. Documentation ------------- https://github.com/melizalab/py-ewave Parameters ---------- filepath: string The full path and name of the file to load. verbose: int Not used. Returns ------- data: array All data traces as an 2-D numpy array, first dimension is time, second is channel. rate: float The sampling rate of the data in Hertz. Raises ------ ImportError The ewave module is not installed * Loading of the data failed """ if not audio_modules['ewave']: raise ImportError data = np.array([]) rate = 0.0 with ewave.open(filepath, 'r') as wf: rate = wf.sampling_rate buffer = wf.read() data = ewave.rescale(buffer, 'float') if len(data.shape) == 1: data = np.reshape(data,(-1, 1)) return data, float(rate)
def load_wavfile(filepath, verbose=0)
-
Load wav file using scipy.io.wavfile.
Documentation
http://docs.scipy.org/doc/scipy/reference/io.html Does not support blocked read.
Parameters
filepath
:string
- The full path and name of the file to load.
verbose
:int
- If larger than zero show detailed error/warning messages.
Returns
data
:array
- All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The scipy.io module is not installed
* Loading of the data failed
Expand source code
def load_wavfile(filepath, verbose=0): """Load wav file using scipy.io.wavfile. Documentation ------------- http://docs.scipy.org/doc/scipy/reference/io.html Does not support blocked read. Parameters ---------- filepath: string The full path and name of the file to load. verbose: int If larger than zero show detailed error/warning messages. Returns ------- data: array All data traces as an 2-D numpy array, first dimension is time, second is channel. rate: float The sampling rate of the data in Hertz. Raises ------ ImportError The scipy.io module is not installed * Loading of the data failed """ if not audio_modules['scipy.io.wavfile']: raise ImportError if verbose < 2: warnings.filterwarnings("ignore") rate, data = wavfile.read(filepath) if verbose < 2: warnings.filterwarnings("always") if data.dtype == np.uint8: data = data / 128.0 - 1.0 elif np.issubdtype(data.dtype, np.signedinteger): data = data / (2.0**(data.dtype.itemsize*8-1)) else: data = data.astype(np.float64, copy=False) if len(data.shape) == 1: data = np.reshape(data,(-1, 1)) return data, float(rate)
def load_soundfile(filepath, verbose=0)
-
Load audio file using SoundFile (based on libsndfile).
Documentation
http://pysoundfile.readthedocs.org http://www.mega-nerd.com/libsndfile
Parameters
filepath
:string
- The full path and name of the file to load.
verbose
:int
- Not used.
Returns
data
:array
- All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The soundfile module is not installed.
* Loading of the data failed.
Expand source code
def load_soundfile(filepath, verbose=0): """Load audio file using SoundFile (based on libsndfile). Documentation ------------- http://pysoundfile.readthedocs.org http://www.mega-nerd.com/libsndfile Parameters ---------- filepath: string The full path and name of the file to load. verbose: int Not used. Returns ------- data: array All data traces as an 2-D numpy array, first dimension is time, second is channel. rate: float The sampling rate of the data in Hertz. Raises ------ ImportError The soundfile module is not installed. * Loading of the data failed. """ if not audio_modules['soundfile']: raise ImportError data = np.array([]) rate = 0.0 with soundfile.SoundFile(filepath, 'r') as sf: rate = sf.samplerate data = sf.read(frames=-1, dtype='float64', always_2d=True) return data, float(rate)
def load_wavefile(filepath, verbose=0)
-
Load audio file using wavefile (based on libsndfile).
Documentation
https://github.com/vokimon/python-wavefile
Parameters
filepath
:string
- The full path and name of the file to load.
verbose
:int
- Not used.
Returns
data
:array
- All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The wavefile module is not installed.
* Loading of the data failed.
Expand source code
def load_wavefile(filepath, verbose=0): """Load audio file using wavefile (based on libsndfile). Documentation ------------- https://github.com/vokimon/python-wavefile Parameters ---------- filepath: string The full path and name of the file to load. verbose: int Not used. Returns ------- data: array All data traces as an 2-D numpy array, first dimension is time, second is channel. rate: float The sampling rate of the data in Hertz. Raises ------ ImportError The wavefile module is not installed. * Loading of the data failed. """ if not audio_modules['wavefile']: raise ImportError rate, data = wavefile.load(filepath) return data.astype(np.float64, copy=False).T, float(rate)
def load_audioread(filepath, verbose=0)
-
Load audio file using audioread.
Documentation
https://github.com/beetbox/audioread
Parameters
filepath
:string
- The full path and name of the file to load.
verbose
:int
- Not used.
Returns
data
:array
- All data traces as an 2-D numpy array, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The audioread module is not installed.
* Loading of the data failed.
Expand source code
def load_audioread(filepath, verbose=0): """Load audio file using audioread. Documentation ------------- https://github.com/beetbox/audioread Parameters ---------- filepath: string The full path and name of the file to load. verbose: int Not used. Returns ------- data: array All data traces as an 2-D numpy array, first dimension is time, second is channel. rate: float The sampling rate of the data in Hertz. Raises ------ ImportError The audioread module is not installed. * Loading of the data failed. """ if not audio_modules['audioread']: raise ImportError data = np.array([]) rate = 0.0 with audioread.audio_open(filepath) as af: rate = af.samplerate data = np.zeros((int(np.ceil(af.samplerate*af.duration)), af.channels), dtype="<i2") index = 0 for buffer in af: fulldata = np.frombuffer(buffer, dtype='<i2').reshape(-1, af.channels) n = fulldata.shape[0] if index + n > len(data): n = len(fulldata) - index if n <= 0: break data[index:index+n,:] = fulldata[:n,:] index += n return data/(2.0**15-1.0), float(rate)
def load_audio(filepath, verbose=0)
-
Call this function to load all channels of audio data from a file.
This function tries different python modules to load the audio file.
Parameters
filepath
:string
- The full path and name of the file to load.
verbose
:int
- If larger than zero show detailed error/warning messages.
Returns
data
:array
- All data traces as an 2-D numpy array, even for single channel data. First dimension is time, second is channel. Data values range maximally between -1 and 1.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ValueError
- Empty
filepath
. FileNotFoundError
filepath
is not an existing file.EOFError
- File size of
filepath
is zero. IOError
- Failed to load data.
Examples
import matplotlib.pyplot as plt from audioio import load_audio data, rate = load_audio('some/audio.wav') plt.plot(np.arange(len(data))/rate, data[:,0]) plt.show()
Expand source code
def load_audio(filepath, verbose=0): """Call this function to load all channels of audio data from a file. This function tries different python modules to load the audio file. Parameters ---------- filepath: string The full path and name of the file to load. verbose: int If larger than zero show detailed error/warning messages. Returns ------- data: array All data traces as an 2-D numpy array, even for single channel data. First dimension is time, second is channel. Data values range maximally between -1 and 1. rate: float The sampling rate of the data in Hertz. Raises ------ ValueError Empty `filepath`. FileNotFoundError `filepath` is not an existing file. EOFError File size of `filepath` is zero. IOError Failed to load data. Examples -------- ``` import matplotlib.pyplot as plt from audioio import load_audio data, rate = load_audio('some/audio.wav') plt.plot(np.arange(len(data))/rate, data[:,0]) plt.show() ``` """ # check values: if filepath is None or len(filepath) == 0: raise ValueError('input argument filepath is empty string!') if not os.path.isfile(filepath): raise FileNotFoundError('file "%s" not found' % filepath) if os.path.getsize(filepath) <= 0: raise EOFError('file "%s" is empty (size=0)!' % filepath) # load an audio file by trying various modules: success = False not_installed = [] for lib, load_file in audio_loader_funcs: if not audio_modules[lib]: if verbose > 1: print('unable to load data from file "%s" using %s module: module not available' % (filepath, lib)) not_installed.append(lib) continue try: data, rate = load_file(filepath, verbose) if len(data) > 0: success = True if verbose > 0: print('loaded data from file "%s" using %s module' % (filepath, lib)) if verbose > 1: print(' sampling rate: %g Hz' % rate) print(' channels : %d' % data.shape[1]) print(' data values : %d' % len(data)) break except Exception as e: pass if not success: need_install = "" if len(not_installed) > 0: need_install = " You may need to install one of the " + \ ', '.join(not_installed) + " packages." raise IOError('failed to load data from file "%s".%s' % (filepath, need_install)) return data, rate
def audio_metadata(file, store_empty=False, first_only=False, verbose=0)
-
Read meta-data of an audio file.
Parameters
file
:string
orfile handle
- The wave file.
store_empty
:bool
- If
False
do not add meta data with empty values. first_only
:bool
- If
False
only store the first element of a list. verbose
:int
- Verbosity level.
Returns
meta_data
:nested dict
- Meta data contained in the audio file. Keys of the nested dictionaries are always strings. If the corresponding values are dictionaries, then the key is the section name of the metadata contained in the dictionary. All other types of values are values for the respective key. In particular they are strings, or list of strings. But other simple types like ints or floats are also allowed.
cues
:list
ofdict
- Cues contained in the wave file. Each item in the list provides - 'id': Id of the cue. - 'pos': Position of the cue in samples. - 'length': Number of samples the cue covers (optional). - 'repeats': How often the cue segment should be repeated (optional). - 'label': Label of the cue (optional). - 'note': Note on the cue (optional). - 'text': Description of cue segment (optional).
Expand source code
def audio_metadata(file, store_empty=False, first_only=False, verbose=0): """ Read meta-data of an audio file. Parameters ---------- file: string or file handle The wave file. store_empty: bool If `False` do not add meta data with empty values. first_only: bool If `False` only store the first element of a list. verbose: int Verbosity level. Returns ------- meta_data: nested dict Meta data contained in the audio file. Keys of the nested dictionaries are always strings. If the corresponding values are dictionaries, then the key is the section name of the metadata contained in the dictionary. All other types of values are values for the respective key. In particular they are strings, or list of strings. But other simple types like ints or floats are also allowed. cues: list of dict Cues contained in the wave file. Each item in the list provides - 'id': Id of the cue. - 'pos': Position of the cue in samples. - 'length': Number of samples the cue covers (optional). - 'repeats': How often the cue segment should be repeated (optional). - 'label': Label of the cue (optional). - 'note': Note on the cue (optional). - 'text': Description of cue segment (optional). """ try: return metadata_wave(file, store_empty, verbose) except ValueError: # not a wave file return {}, []
def flatten_metadata(md, keep_sections=False)
-
Expand source code
def flatten_metadata(md, keep_sections=False): """ """ def flatten(cd, section): df = {} for k in cd: if isinstance(cd[k], dict): df.update(flatten(cd[k], section + k + '.')) else: if keep_sections: df[section+k] = cd[k] else: df[k] = cd[k] return df return flatten(md, '')
def blocks(data, block_size, noverlap=0, start=0, stop=None)
-
Generator for blockwise processing of array data.
Parameters
data
:array
- Data to loop over. First dimension is time.
block_size
:int
- Len of data blocks to be returned.
noverlap
:int
- Number of indices successive data points should overlap.
start
:int
- Optional first index from which on to return blocks of data.
stop
:int
- Optional last index until which to return blocks of data.
Yields
data
:array
- Successive slices of the input data.
Raises
ValueError
noverlap
larger or equal toblock_size
.
Examples
import numpy as np from audioio import blocks data = np.arange(20) for x in blocks(data, 6, 2): print(x)
results in
[0 1 2 3 4 5] [4 5 6 7 8 9] [ 8 9 10 11 12 13] [12 13 14 15 16 17] [16 17 18 19]
Use it for processing long audio data, like computing a spectrogram with overlap:
from scipy.signal import spectrogram from audioio import AudioLoader, blocks nfft = 2048 with AudioLoader('some/audio.wav') as data: for x in blocks(data, 100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.samplerate, nperseg=nfft, noverlap=nfft//2)
Expand source code
def blocks(data, block_size, noverlap=0, start=0, stop=None): """Generator for blockwise processing of array data. Parameters ---------- data: array Data to loop over. First dimension is time. block_size: int Len of data blocks to be returned. noverlap: int Number of indices successive data points should overlap. start: int Optional first index from which on to return blocks of data. stop: int Optional last index until which to return blocks of data. Yields ------ data: array Successive slices of the input data. Raises ------ ValueError `noverlap` larger or equal to `block_size`. Examples -------- ``` import numpy as np from audioio import blocks data = np.arange(20) for x in blocks(data, 6, 2): print(x) ``` results in ```text [0 1 2 3 4 5] [4 5 6 7 8 9] [ 8 9 10 11 12 13] [12 13 14 15 16 17] [16 17 18 19] ``` Use it for processing long audio data, like computing a spectrogram with overlap: ``` from scipy.signal import spectrogram from audioio import AudioLoader, blocks nfft = 2048 with AudioLoader('some/audio.wav') as data: for x in blocks(data, 100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.samplerate, nperseg=nfft, noverlap=nfft//2) ``` """ if noverlap >= block_size: raise ValueError('noverlap=%d larger than block_size=%d' % (noverlap, block_size)) if stop is None: stop = len(data) m = block_size - noverlap n = (stop-start-noverlap)//m if n == 0: yield data[start:stop] else: for k in range(n): yield data[start+k*m:start+k*m+block_size] if stop - start - (k*m+block_size) > 0: yield data[start+(k+1)*m:]
def unwrap(data)
-
Fixes data that exceeded the -1 to 1 range.
If data that exceed the range from -1.0 to 1.0 are stored in a wav file, they get wrapped around. This functions tries to undo this wrapping.
Parameters
data
:1D
or2D ndarray
- Data to be fixed.
Returns
data
:same as input data
- The fixed data.
Expand source code
def unwrap(data): """Fixes data that exceeded the -1 to 1 range. If data that exceed the range from -1.0 to 1.0 are stored in a wav file, they get wrapped around. This functions tries to undo this wrapping. Parameters ---------- data: 1D or 2D ndarray Data to be fixed. Returns ------- data: same as input data The fixed data. """ if len(data.shape) > 1: for c in range(data.shape[1]): data[:,c] = unwrap(data[:,c]) else: for k in range(20): dd = (data[1:] < -0.8) & (np.diff(data) <= -1.0) du = (data[1:] > 0.8) & (np.diff(data) >= 1.0) if np.sum(dd) == 0 and np.sum(du) == 0: break data[1:][dd] += 2.0 data[1:][du] -= 2.0 return data
def demo(file_path, plot)
-
Demo of the audioloader functions.
Parameters
file_path
:string
- File path of an audio file.
plot
:bool
- If True also plot the loaded data.
Expand source code
def demo(file_path, plot): """Demo of the audioloader functions. Parameters ---------- file_path: string File path of an audio file. plot: bool If True also plot the loaded data. """ print('') print("try load_audio:") full_data, rate = load_audio(file_path, 1) if plot: plt.plot(np.arange(len(full_data))/rate, full_data[:,0]) plt.show() if audio_modules['soundfile'] and audio_modules['audioread']: print('') print("cross check:") data1, rate1 = load_soundfile(file_path) data2, rate2 = load_audioread(file_path) n = min((len(data1), len(data2))) print("rms difference is %g" % np.std(data1[:n]-data2[:n])) if plot: plt.plot(np.arange(len(data1))/rate1, data1[:,0]) plt.plot(np.arange(len(data2))/rate2, data2[:,0]) plt.show() print('') print("try AudioLoader:") with AudioLoader(file_path, 4.0, 1.0, 1) as data: print('samplerate: %g' % data.samplerate) print('channels: %d %d' % (data.channels, data.shape[1])) print('frames: %d %d' % (len(data), data.shape[0])) nframes = int(1.5*data.samplerate) # check access: print('check random single frame access') for inx in np.random.randint(0, len(data), 1000): if np.any(np.abs(full_data[inx] - data[inx]) > 2.0**(-14)): print('single random frame access failed', inx, full_data[inx], data[inx]) print('check random frame slice access') for inx in np.random.randint(0, len(data)-nframes, 1000): if np.any(np.abs(full_data[inx:inx+nframes] - data[inx:inx+nframes]) > 2.0**(-14)): print('random frame slice access failed', inx) print('check frame slice access forward') for inx in range(0, len(data)-nframes, 10): if np.any(np.abs(full_data[inx:inx+nframes] - data[inx:inx+nframes]) > 2.0**(-14)): print('frame slice access forward failed', inx) print('check frame slice access backward') for inx in range(len(data)-nframes, 0, -10): if np.any(np.abs(full_data[inx:inx+nframes] - data[inx:inx+nframes]) > 2.0**(-14)): print('frame slice access backward failed', inx) # forward: for i in range(0, len(data), nframes): print('forward %d-%d' % (i, i+nframes)) x = data[i:i+nframes,0] if plot: plt.plot((i+np.arange(len(x)))/rate, x) plt.show() # and backwards: for i in reversed(range(0, len(data), nframes)): print('backward %d-%d' % (i, i+nframes)) x = data[i:i+nframes,0] if plot: plt.plot((i+np.arange(len(x)))/rate, x) plt.show()
Classes
class BufferArray (verbose=0)
-
Random access to 2D data of which only a part is held in memory.
This is a base class for accessing large audio recordings either from a file (class AudioLoader) or by computing it contents. The BufferArray behaves like a single big ndarray with first dimension indexing the frames and second dimension indexing the channels of the audio data. Internally it only holds a part of the data in memory.
Classes inheriting BufferArray just need to implement
self.load_buffer(offset, size, buffer)
This function needs to load the supplied 2-D
buffer
withsize
frames of data starting atoffset
.In the constructor or some kind of opening function, you need to set the following member variables, followed by a call to
_init_buffer()
:self.samplerate # number of frames per second self.channels # number of channels per frame self.frames # total number of frames self.shape = (self.frames, self.channels) self.buffersize # number of frames the buffer should hold self.backsize # number of frames kept for moving back self._init_buffer()
Parameters
verbose
:int
- If larger than zero show detailed error/warning messages.
Attributes
samplerate
:float
- The sampling rate of the data in seconds.
channels
:int
- The number of channels.
frames
:int
- The number of frames. Same as
len()
. shape
:tuple
- Frames and channels of the data.
offset
:int
- Index of first frame in the current buffer.
buffer
:array
offloats
- The curently available data.
ampl_min
:float
- Minimum amplitude the data supports.
ampl_max
:float
- Maximum amplitude the data supports.
Methods
len() Number of frames. getitem Access data. update_buffer() Update the buffer for a range of frames. load_buffer() Load a range of frames into a buffer.
Notes
Access via
__getitem__
or__next__
is slow! Even worse, using numpy functions on this class first converts it to a numpy array - that is something we actually do not want! We should subclass directly from numpy.ndarray . For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html When subclassing, there is an offset argument, that might help to speed up__getitem__
.Expand source code
class BufferArray(object): """Random access to 2D data of which only a part is held in memory. This is a base class for accessing large audio recordings either from a file (class AudioLoader) or by computing it contents. The BufferArray behaves like a single big ndarray with first dimension indexing the frames and second dimension indexing the channels of the audio data. Internally it only holds a part of the data in memory. Classes inheriting BufferArray just need to implement ``` self.load_buffer(offset, size, buffer) ``` This function needs to load the supplied 2-D `buffer` with `size` frames of data starting at `offset`. In the constructor or some kind of opening function, you need to set the following member variables, followed by a call to `_init_buffer()`: ``` self.samplerate # number of frames per second self.channels # number of channels per frame self.frames # total number of frames self.shape = (self.frames, self.channels) self.buffersize # number of frames the buffer should hold self.backsize # number of frames kept for moving back self._init_buffer() ``` Parameters ---------- verbose: int If larger than zero show detailed error/warning messages. Attributes ---------- samplerate: float The sampling rate of the data in seconds. channels: int The number of channels. frames: int The number of frames. Same as `len()`. shape: tuple Frames and channels of the data. offset: int Index of first frame in the current buffer. buffer: array of floats The curently available data. ampl_min: float Minimum amplitude the data supports. ampl_max: float Maximum amplitude the data supports. Methods ------- len() Number of frames. __getitem__ Access data. update_buffer() Update the buffer for a range of frames. load_buffer() Load a range of frames into a buffer. Notes ----- Access via `__getitem__` or `__next__` is slow! Even worse, using numpy functions on this class first converts it to a numpy array - that is something we actually do not want! We should subclass directly from numpy.ndarray . For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html When subclassing, there is an offset argument, that might help to speed up `__getitem__` . """ def __init__(self, verbose=0): self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.ampl_min = -1.0 self.ampl_max = +1.0 self.offset = 0 self.buffersize = 0 self.backsize = 0 self.buffer = np.zeros((0,0)) self.verbose = verbose def __enter__(self): return self def __exit__(self, ex_type, ex_value, tb): self.__del__() return (ex_value is None) def __len__(self): return self.frames def __iter__(self): self.iter_counter = -1 return self def __next__(self): self.iter_counter += 1 if self.iter_counter >= self.frames: raise StopIteration else: self.update_buffer(self.iter_counter, self.iter_counter+1) return self.buffer[self.iter_counter-self.offset,:] def next(self): # python 2 return self.__next__() def __getitem__(self, key): """Access data of the audio file.""" if type(key) is tuple: index = key[0] else: index = key if isinstance(index, slice): start = index.start stop = index.stop step = index.step if start is None: start=0 else: start = int(start) if start < 0: start += len(self) if stop is None: stop = len(self) else: stop = int(stop) if stop < 0: stop += len(self) if stop > self.frames: stop = self.frames if step is None: step = 1 else: step = int(step) self.update_buffer(start, stop) newindex = slice(start-self.offset, stop-self.offset, step) elif hasattr(index, '__len__'): index = [inx if inx >= 0 else inx+len(self) for inx in index] start = min(index) stop = max(index) self.update_buffer(start, stop+1) newindex = [inx-self.offset for inx in index] else: if index > self.frames: raise IndexError index = int(index) if index < 0: index += len(self) self.update_buffer(index, index+1) newindex = index-self.offset if type(key) is tuple: newkey = (newindex,) + key[1:] return self.buffer[newkey] else: return self.buffer[newindex] def _init_buffer(self): """Allocate a buffer with zero frames but all the channels.""" self.buffer = np.empty((0, self.channels)) self.offset = 0 def update_buffer(self, start, stop): """Make sure that the buffer contains data between start and stop. Parameters ---------- start: int Index of the first frame for the buffer. stop: int Index of the last frame for the buffer. """ if start < self.offset or stop > self.offset + self.buffer.shape[0]: offset, size = self._read_indices(start, stop) r_offset, r_size = self._recycle_buffer(offset, size) self.offset = offset # load buffer content from file, this is backend specific: self.load_buffer(r_offset, r_size, self.buffer[r_offset-self.offset: r_offset+r_size-self.offset,:]) if self.verbose > 1: print(' loaded %d frames from %d up to %d' % (self.buffer.shape[0], self.offset, self.offset+self.buffer.shape[0])) def _read_indices(self, start, stop): """Compute position and size for next read from file. This takes buffersize and backsize into account. Parameters ---------- start: int Index of the first requested frame. stop: int Index of the last requested frame. Returns ------- offset: int Frame index for the first frame in the buffer. size: int Number of frames the buffer should hold. """ offset = start size = stop - start if size < self.buffersize: back = self.backsize if self.buffersize - size < back: back = self.buffersize - size offset -= back size = self.buffersize if offset < 0: offset = 0 if offset + size > self.frames: offset = self.frames - size if offset < 0: offset = 0 size = self.frames - offset if self.verbose > 2: print(' request %6d frames at %d-%d' % (size, offset, offset+size)) return offset, size def _recycle_buffer(self, offset, size): """Recycle buffer contents and return indices for data to be loaded from file. Move already existing parts of the buffer to their new position (as returned by _read_indices() ) and return position and size of data chunk that still needs to be loaded from file. Parameters ---------- offset: int Frame index for the first frame in the buffer. size: int Number of frames the buffer should hold. Returns ------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. """ def allocate_buffer(size): """Make sure the buffer has the right size.""" if size != self.buffer.shape[0]: self.buffer = np.empty((size, self.channels)) r_offset = offset r_size = size if ( offset >= self.offset and offset < self.offset + self.buffer.shape[0] ): i = self.offset + self.buffer.shape[0] - offset n = i if n > size: n = size m = self.buffer.shape[0] buffer = self.buffer[-i:m-i+n,:] allocate_buffer(size) self.buffer[:n,:] = buffer r_offset += n r_size -= n if self.verbose > 2: print(' recycle %6d frames from %d-%d of the old %d-sized buffer to the front at %d-%d (%d-%d in buffer)' % (n, self.offset+m-i, self.offset+m-i+n, m, offset, offset+n, 0, n)) elif ( offset + size > self.offset and offset + size <= self.offset + self.buffer.shape[0] ): n = offset + size - self.offset m = self.buffer.shape[0] buffer = self.buffer[:n,:] allocate_buffer(size) self.buffer[-n:,:] = buffer r_size -= n if self.verbose > 2: print(' recycle %6d frames from %d-%d of the old %d-sized buffer to the end at %d-%d (%d-%d in buffer)' % (n, self.offset, self.offset+n, m, offset+size-n, offset+size, size-n, size)) else: allocate_buffer(size) return r_offset, r_size
Subclasses
Methods
def next(self)
-
Expand source code
def next(self): # python 2 return self.__next__()
def update_buffer(self, start, stop)
-
Make sure that the buffer contains data between start and stop.
Parameters
start
:int
- Index of the first frame for the buffer.
stop
:int
- Index of the last frame for the buffer.
Expand source code
def update_buffer(self, start, stop): """Make sure that the buffer contains data between start and stop. Parameters ---------- start: int Index of the first frame for the buffer. stop: int Index of the last frame for the buffer. """ if start < self.offset or stop > self.offset + self.buffer.shape[0]: offset, size = self._read_indices(start, stop) r_offset, r_size = self._recycle_buffer(offset, size) self.offset = offset # load buffer content from file, this is backend specific: self.load_buffer(r_offset, r_size, self.buffer[r_offset-self.offset: r_offset+r_size-self.offset,:]) if self.verbose > 1: print(' loaded %d frames from %d up to %d' % (self.buffer.shape[0], self.offset, self.offset+self.buffer.shape[0]))
class AudioLoader (filepath=None, buffersize=10.0, backsize=0.0, verbose=0)
-
Buffered reading of audio data for random access of the data in the file.
The class allows for reading very large audio files that do not fit into memory. An AudioLoader instance can be used like a huge read-only numpy array, i.e.
data = AudioLoader('path/to/audio/file.wav') x = data[10000:20000,0]
The first index specifies the frame, the second one the channel.
Behind the scenes AudioLoader tries to open the audio file with all available audio modules until it succeeds (first line). It then reads data from the file as necessary for the requested data (second line).
Reading sequentially through the file is always possible. Some modules, however, (e.g. audioread, needed for mp3 files) can only read forward. If previous data are requested, then the file is read from the beginning. This slows down access to previous data considerably. Use the
backsize
argument of the open function to make sure some data are loaded into the buffer before the requested frame. Then a subsequent access to the data within backsizeseconds
before that frame can still be handled without the need to reread the file from the beginning.Usage
With context management:
import audioio as aio with aio.AudioLoader(filepath, 60.0, 10.0) as data: # do something with the content of the file: x = data[0:10000] y = data[10000:20000] z = x + y
For using a specific audio module, here the audioread module:
data = aio.AudioLoader() with data.open_audioread(filepath, 60.0, 10.0): # do something ...
Use
blocks()
for sequential, blockwise reading and processing:from scipy.signal import spectrogram nfft = 2048 with aio.AudioLoader('some/audio.wav') as data: for x in data.blocks(100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.samplerate, nperseg=nfft, noverlap=nfft//2)
For loop iterates over single frames (1-D arrays containing samples for each channel):
with aio.AudioLoader('some/audio.wav') as data: for x in data: print(x)
Traditional open and close:
data = aio.AudioLoader(filepath, 60.0) x = data[:,:] # read the whole file data.close()
this is the same as:
data = aio.AudioLoader() data.open(filepath, 60.0) ...
Parameters
filepath
:string
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Attributes
filepath
:str
- Path and name of the file.
samplerate
:float
- The sampling rate of the data in seconds.
channels
:int
- The number of channels.
frames
:int
- The number of frames in the file. Same as
len()
. shape
:tuple
- Frames and channels of the data.
offset
:int
- Index of first frame in the current buffer.
buffer
:array
offloats
- The curently available data from the file.
ampl_min
:float
- Minimum amplitude the file format supports. Always -1.0.
ampl_max
:float
- Maximum amplitude the file format supports. Always +1.0.
Methods
len() Number of frames. open() Open an audio file by trying available audio modules. open_*() Open an audio file with the respective audio module. getitem Access data of the audio file. update_buffer() Update the internal buffer for a range of frames. load_buffer() Load a range of frames into a buffer. blocks() Generator for blockwise processing of AudioLoader data. metadata() Meta-data stored along with the audio data. close() Close the file.
Notes
Access via
__getitem__
or__next__
is slow! Even worse, using numpy functions on this class first converts it to a numpy array - that is something we actually do not want! We should subclass directly from numpy.ndarray . For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html When subclassing, there is an offset argument, that might help to speed up__getitem__
.Expand source code
class AudioLoader(BufferArray): """Buffered reading of audio data for random access of the data in the file. The class allows for reading very large audio files that do not fit into memory. An AudioLoader instance can be used like a huge read-only numpy array, i.e. ``` data = AudioLoader('path/to/audio/file.wav') x = data[10000:20000,0] ``` The first index specifies the frame, the second one the channel. Behind the scenes AudioLoader tries to open the audio file with all available audio modules until it succeeds (first line). It then reads data from the file as necessary for the requested data (second line). Reading sequentially through the file is always possible. Some modules, however, (e.g. audioread, needed for mp3 files) can only read forward. If previous data are requested, then the file is read from the beginning. This slows down access to previous data considerably. Use the `backsize` argument of the open function to make sure some data are loaded into the buffer before the requested frame. Then a subsequent access to the data within backsize `seconds` before that frame can still be handled without the need to reread the file from the beginning. Usage ----- With context management: ``` import audioio as aio with aio.AudioLoader(filepath, 60.0, 10.0) as data: # do something with the content of the file: x = data[0:10000] y = data[10000:20000] z = x + y ``` For using a specific audio module, here the audioread module: ``` data = aio.AudioLoader() with data.open_audioread(filepath, 60.0, 10.0): # do something ... ``` Use `blocks()` for sequential, blockwise reading and processing: ``` from scipy.signal import spectrogram nfft = 2048 with aio.AudioLoader('some/audio.wav') as data: for x in data.blocks(100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.samplerate, nperseg=nfft, noverlap=nfft//2) ``` For loop iterates over single frames (1-D arrays containing samples for each channel): ``` with aio.AudioLoader('some/audio.wav') as data: for x in data: print(x) ``` Traditional open and close: ``` data = aio.AudioLoader(filepath, 60.0) x = data[:,:] # read the whole file data.close() ``` this is the same as: ``` data = aio.AudioLoader() data.open(filepath, 60.0) ... ``` Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Attributes ---------- filepath: str Path and name of the file. samplerate: float The sampling rate of the data in seconds. channels: int The number of channels. frames: int The number of frames in the file. Same as `len()`. shape: tuple Frames and channels of the data. offset: int Index of first frame in the current buffer. buffer: array of floats The curently available data from the file. ampl_min: float Minimum amplitude the file format supports. Always -1.0. ampl_max: float Maximum amplitude the file format supports. Always +1.0. Methods ------- len() Number of frames. open() Open an audio file by trying available audio modules. open_*() Open an audio file with the respective audio module. __getitem__ Access data of the audio file. update_buffer() Update the internal buffer for a range of frames. load_buffer() Load a range of frames into a buffer. blocks() Generator for blockwise processing of AudioLoader data. metadata() Meta-data stored along with the audio data. close() Close the file. Notes ----- Access via `__getitem__` or `__next__` is slow! Even worse, using numpy functions on this class first converts it to a numpy array - that is something we actually do not want! We should subclass directly from numpy.ndarray . For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html When subclassing, there is an offset argument, that might help to speed up `__getitem__` . """ def __init__(self, filepath=None, buffersize=10.0, backsize=0.0, verbose=0): super().__init__(verbose) self.filepath = None self.sf = None self.close = self._close if filepath is not None: self.open(filepath, buffersize, backsize, verbose) def _close(self): pass def __del__(self): self.close() def blocks(self, block_size, noverlap=0, start=0, stop=None): """Generator for blockwise processing of AudioLoader data. Parameters ---------- block_size: int Len of data blocks to be returned. noverlap: int Number of indices successive data points should overlap. start: int Optional first index from which on to return blocks of data. stop: int Optional last index until which to return blocks of data. Yields ------ data: array Successive slices of the data managed by AudioLoader. Raises ------ ValueError `noverlap` larger or equal to `block_size`. Examples -------- Use it for processing long audio data, like computing a spectrogram with overlap: ``` from scipy.signal import spectrogram from audioio import AudioLoader, blocks nfft = 2048 with AudioLoader('some/audio.wav') as data: for x in data.blocks(100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.samplerate, nperseg=nfft, noverlap=nfft//2) ``` """ return blocks(self, block_size, noverlap, start, stop) def metadata(self, store_empty=False, first_only=False): """Read meta-data of the audio file. This default implementation tries to get wave file metadata. If this fails it does nothing. Parameters ---------- store_empty: bool If `False` do not add meta data with empty values. first_only: bool If `False` only store the first element of a list. Returns ------- meta_data: nested dict Meta data contained in the audio file. Keys of the nested dictionaries are always strings. If the corresponding values are dictionaries, then the key is the section name of the metadata contained in the dictionary. All other types of values are values for the respective key. In particular they are strings, or list of strings. But other simple types like ints or floats are also allowed. cues: list of dict Cues contained in the wave file. Each item in the list provides - 'id': Id of the cue. - 'pos': Position of the cue in samples. - 'length': Number of samples the cue covers (optional). - 'repeats': How often the cue segment should be repeated (optional). - 'label': Label of the cue (optional). - 'note': Note on the cue (optional). - 'text': Description of cue segment (optional). """ try: return metadata_wave(self.filepath, store_empty, self.verbose) except ValueError: return {}, [] # wave interface: def open_wave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the wave module. Note: we assume that setpos() and tell() use integer numbers! Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The wave module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_wave(filepath) with filepath=%s' % filepath) if not audio_modules['wave']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_wave() self.sf = wave.open(filepath, 'r') self.filepath = filepath self.samplerate = float(self.sf.getframerate()) sampwidth = self.sf.getsampwidth() if sampwidth == 1: self.dtype = 'u1' else: self.dtype = 'i%d' % sampwidth self.factor = 1.0/(2.0**(sampwidth*8-1)) self.channels = self.sf.getnchannels() self.frames = self.sf.getnframes() self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_wave self.load_buffer = self._load_buffer_wave self.metadata = self._metadata_wave # read 1 frame to determine the unit of the position values: self.p0 = self.sf.tell() self.sf.readframes(1) self.pfac = self.sf.tell() - self.p0 self.sf.setpos(self.p0) return self def _close_wave(self): """Close the audio file using the wave module. """ if self.sf is not None: self.sf.close() self.sf = None def _load_buffer_wave(self, r_offset, r_size, buffer): """Load new data from file using the wave module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ self.sf.setpos(r_offset*self.pfac + self.p0) fbuffer = self.sf.readframes(r_size) fbuffer = np.frombuffer(fbuffer, dtype=self.dtype).reshape((-1, self.channels)) if self.dtype[0] == 'u': buffer[:, :] = fbuffer * self.factor - 1.0 else: buffer[:, :] = fbuffer * self.factor def _metadata_wave(self, store_empty=False, first_only=False): """ Read meta-data of a wave file. See also -------- metadata() """ return metadata_wave(self.filepath, store_empty, self.verbose) # ewave interface: def open_ewave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the ewave module. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The ewave module is not installed. """ self.verbose = verbose if self.verbose > 0: print('open_ewave(filepath) with filepath=%s' % filepath) if not audio_modules['ewave']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_ewave() self.sf = ewave.open(filepath, 'r') self.filepath = filepath self.samplerate = float(self.sf.sampling_rate) self.channels = self.sf.nchannels self.frames = self.sf.nframes self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_ewave self.load_buffer = self._load_buffer_ewave self.metadata = self._metadata_wave return self def _close_ewave(self): """Close the audio file using the ewave module. """ if self.sf is not None: del self.sf self.sf = None def _load_buffer_ewave(self, r_offset, r_size, buffer): """Load new data from file using the wave module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ fbuffer = self.sf.read(frames=r_size, offset=r_offset, memmap='r') fbuffer = ewave.rescale(fbuffer, 'float') if len(fbuffer.shape) == 1: fbuffer = np.reshape(fbuffer,(-1, 1)) buffer[:,:] = fbuffer # soundfile interface: def open_soundfile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the SoundFile module. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The SoundFile module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_soundfile(filepath) with filepath=%s' % filepath) if not audio_modules['soundfile']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_soundfile() self.sf = soundfile.SoundFile(filepath, 'r') self.filepath = filepath self.samplerate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = 0 if self.sf.seekable(): self.frames = self.sf.seek(0, soundfile.SEEK_END) self.sf.seek(0, soundfile.SEEK_SET) # TODO: if not seekable, we cannot handle that file! self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_soundfile self.load_buffer = self._load_buffer_soundfile return self def _close_soundfile(self): """Close the audio file using the SoundFile module. """ if self.sf is not None: self.sf.close() self.sf = None def _load_buffer_soundfile(self, r_offset, r_size, buffer): """Load new data from file using the wave module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ self.sf.seek(r_offset, soundfile.SEEK_SET) buffer[:, :] = self.sf.read(r_size, always_2d=True) # wavefile interface: def open_wavefile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the wavefile module. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The wavefile module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_wavefile(filepath) with filepath=%s' % filepath) if not audio_modules['wavefile']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_wavefile() self.sf = wavefile.WaveReader(filepath) self.filepath = filepath self.samplerate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = self.sf.frames self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_wavefile self.load_buffer = self._load_buffer_wavefile return self def _close_wavefile(self): """Close the audio file using the wavefile module. """ if self.sf is not None: self.sf.close() self.sf = None def _load_buffer_wavefile(self, r_offset, r_size, buffer): """Load new data from file using the wave module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ self.sf.seek(r_offset, wavefile.Seek.SET) fbuffer = self.sf.buffer(r_size, dtype=self.buffer.dtype) self.sf.read(fbuffer) buffer[:,:] = fbuffer.T # audioread interface: def open_audioread(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the audioread module. Note, that audioread can only read forward, therefore random and backward access is really slow. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The audioread module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_audio_read(filepath) with filepath=%s' % filepath) if not audio_modules['audioread']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_audioread() self.sf = audioread.audio_open(filepath) self.filepath = filepath self.samplerate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = int(np.ceil(self.samplerate*self.sf.duration)) self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.read_buffer = np.zeros((0,0)) self.read_offset = 0 self.close = self._close_audioread self.load_buffer = self._load_buffer_audioread self.filepath = filepath self.sf_iter = self.sf.__iter__() return self def _close_audioread(self): """Close the audio file using the audioread module. """ if self.sf is not None: self.sf.__exit__(None, None, None) self.sf = None def _load_buffer_audioread(self, r_offset, r_size, buffer): """Load new data from file using the wave module. audioread can only iterate through a file once and in blocksizes that are given by audioread. Therefore we keep yet another buffer: `self.read_buffer` at file offset `self.read_offset` containing whatever audioread returned. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ b_offset = 0 if ( self.read_offset + self.read_buffer.shape[0] >= r_offset + r_size and self.read_offset < r_offset + r_size ): # read_buffer overlaps at the end of the requested interval: i = 0 n = r_offset + r_size - self.read_offset if n > r_size: i += n - r_size n = r_size buffer[self.read_offset+i-r_offset:self.read_offset+i+n-r_offset,:] = self.read_buffer[i:i+n,:] / (2.0**15-1.0) if self.verbose > 2: print(' recycle %6d frames from the front of the read buffer at %d-%d (%d-%d in buffer)' % (n, self.read_offset, self.read_offset+n, self.read_offset-self.offset, self.read_offset-self.offset+n)) r_size -= n if r_size <= 0: return # go back to beginning of file: if r_offset < self.read_offset: if self.verbose > 2: print(' rewind') self._close_audioread() self.sf = audioread.audio_open(self.filepath) self.sf_iter = self.sf.__iter__() self.read_buffer = np.zeros((0,0)) self.read_offset = 0 # read to position: while self.read_offset + self.read_buffer.shape[0] < r_offset: self.read_offset += self.read_buffer.shape[0] try: if hasattr(self.sf_iter, 'next'): fbuffer = self.sf_iter.next() else: fbuffer = next(self.sf_iter) except StopIteration: self.read_buffer = np.zeros((0,0)) buffer[:,:] = 0.0 if self.verbose > 1: print(' caught StopIteration, padded buffer with %d zeros' % r_size) break self.read_buffer = np.frombuffer(fbuffer, dtype='<i2').reshape(-1, self.channels) if self.verbose > 2: print(' read forward by %d frames' % self.read_buffer.shape[0]) # recycle file data: if ( self.read_offset + self.read_buffer.shape[0] > r_offset and self.read_offset <= r_offset ): i = r_offset - self.read_offset n = self.read_offset + self.read_buffer.shape[0] - r_offset if n > r_size: n = r_size buffer[:n,:] = self.read_buffer[i:i+n,:] / (2.0**15-1.0) if self.verbose > 2: print(' recycle %6d frames from the end of the read buffer at %d-%d to %d-%d (%d-%d in buffer)' % (n, self.read_offset, self.read_offset + self.read_buffer.shape[0], r_offset, r_offset+n, r_offset-self.offset, r_offset+n-self.offset)) b_offset += n r_offset += n r_size -= n # read data: if self.verbose > 2 and r_size > 0: print(' read %6d frames at %d-%d (%d-%d in buffer)' % (r_size, r_offset, r_offset+r_size, r_offset-self.offset, r_offset+r_size-self.offset)) while r_size > 0: self.read_offset += self.read_buffer.shape[0] try: if hasattr(self.sf_iter, 'next'): fbuffer = self.sf_iter.next() else: fbuffer = next(self.sf_iter) except StopIteration: self.read_buffer = np.zeros((0,0)) buffer[b_offset:,:] = 0.0 if self.verbose > 1: print(' caught StopIteration, padded buffer with %d zeros' % r_size) break self.read_buffer = np.frombuffer(fbuffer, dtype='<i2').reshape(-1, self.channels) n = self.read_buffer.shape[0] if n > r_size: n = r_size if n > 0: buffer[b_offset:b_offset+n,:] = self.read_buffer[:n,:] / (2.0**15-1.0) if self.verbose > 2: print(' read %6d frames to %d-%d (%d-%d in buffer)' % (n, r_offset, r_offset+n, r_offset-self.offset, r_offset+n-self.offset)) b_offset += n r_offset += n r_size -= n def open(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ValueError Empty `filepath`. FileNotFoundError `filepath` is not an existing file. EOFError File size of `filepath` is zero. IOError Failed to load data. """ self.buffer = np.array([]) self.samplerate = 0.0 if len(filepath) == 0: raise ValueError('input argument filepath is empty string!') if not os.path.isfile(filepath): raise FileNotFoundError('file "%s" not found' % filepath) if os.path.getsize(filepath) <= 0: raise EOFError('file "%s" is empty (size=0)!' % filepath) # list of implemented open functions: audio_open = [ ['soundfile', self.open_soundfile], ['audioread', self.open_audioread], ['wave', self.open_wave], ['wavefile', self.open_wavefile], ['ewave', self.open_ewave] ] # open an audio file by trying various modules: success = False not_installed = [] for lib, open_file in audio_open: if not audio_modules[lib]: if verbose > 1: print('failed to load data from file "%s" using %s module' % (filepath, lib)) not_installed.append(lib) continue try: open_file(filepath, buffersize, backsize, verbose-1) if self.frames > 0: success = True if verbose > 0: print('opened audio file "%s" using %s' % (filepath, lib)) if verbose > 1: print(' sampling rate: %g Hz' % self.samplerate) print(' data values : %d' % self.frames) break except Exception as e: pass if not success: need_install = "" if len(not_installed) > 0: need_install = " You may need to install one of the " + \ ', '.join(not_installed) + " packages." raise IOError('failed to load data from file "%s".%s' % (filepath, need_install)) return self
Ancestors
Methods
def blocks(self, block_size, noverlap=0, start=0, stop=None)
-
Generator for blockwise processing of AudioLoader data.
Parameters
block_size
:int
- Len of data blocks to be returned.
noverlap
:int
- Number of indices successive data points should overlap.
start
:int
- Optional first index from which on to return blocks of data.
stop
:int
- Optional last index until which to return blocks of data.
Yields
data
:array
- Successive slices of the data managed by AudioLoader.
Raises
ValueError
noverlap
larger or equal toblock_size
.
Examples
Use it for processing long audio data, like computing a spectrogram with overlap:
from scipy.signal import spectrogram from audioio import AudioLoader, blocks nfft = 2048 with AudioLoader('some/audio.wav') as data: for x in data.blocks(100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.samplerate, nperseg=nfft, noverlap=nfft//2)
Expand source code
def blocks(self, block_size, noverlap=0, start=0, stop=None): """Generator for blockwise processing of AudioLoader data. Parameters ---------- block_size: int Len of data blocks to be returned. noverlap: int Number of indices successive data points should overlap. start: int Optional first index from which on to return blocks of data. stop: int Optional last index until which to return blocks of data. Yields ------ data: array Successive slices of the data managed by AudioLoader. Raises ------ ValueError `noverlap` larger or equal to `block_size`. Examples -------- Use it for processing long audio data, like computing a spectrogram with overlap: ``` from scipy.signal import spectrogram from audioio import AudioLoader, blocks nfft = 2048 with AudioLoader('some/audio.wav') as data: for x in data.blocks(100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.samplerate, nperseg=nfft, noverlap=nfft//2) ``` """ return blocks(self, block_size, noverlap, start, stop)
def metadata(self, store_empty=False, first_only=False)
-
Read meta-data of the audio file.
This default implementation tries to get wave file metadata. If this fails it does nothing.
Parameters
store_empty
:bool
- If
False
do not add meta data with empty values. first_only
:bool
- If
False
only store the first element of a list.
Returns
meta_data
:nested dict
- Meta data contained in the audio file. Keys of the nested dictionaries are always strings. If the corresponding values are dictionaries, then the key is the section name of the metadata contained in the dictionary. All other types of values are values for the respective key. In particular they are strings, or list of strings. But other simple types like ints or floats are also allowed.
cues
:list
ofdict
- Cues contained in the wave file. Each item in the list provides - 'id': Id of the cue. - 'pos': Position of the cue in samples. - 'length': Number of samples the cue covers (optional). - 'repeats': How often the cue segment should be repeated (optional). - 'label': Label of the cue (optional). - 'note': Note on the cue (optional). - 'text': Description of cue segment (optional).
Expand source code
def metadata(self, store_empty=False, first_only=False): """Read meta-data of the audio file. This default implementation tries to get wave file metadata. If this fails it does nothing. Parameters ---------- store_empty: bool If `False` do not add meta data with empty values. first_only: bool If `False` only store the first element of a list. Returns ------- meta_data: nested dict Meta data contained in the audio file. Keys of the nested dictionaries are always strings. If the corresponding values are dictionaries, then the key is the section name of the metadata contained in the dictionary. All other types of values are values for the respective key. In particular they are strings, or list of strings. But other simple types like ints or floats are also allowed. cues: list of dict Cues contained in the wave file. Each item in the list provides - 'id': Id of the cue. - 'pos': Position of the cue in samples. - 'length': Number of samples the cue covers (optional). - 'repeats': How often the cue segment should be repeated (optional). - 'label': Label of the cue (optional). - 'note': Note on the cue (optional). - 'text': Description of cue segment (optional). """ try: return metadata_wave(self.filepath, store_empty, self.verbose) except ValueError: return {}, []
def open_wave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the wave module.
Note: we assume that setpos() and tell() use integer numbers!
Parameters
filepath
:string
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The wave module is not installed
Expand source code
def open_wave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the wave module. Note: we assume that setpos() and tell() use integer numbers! Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The wave module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_wave(filepath) with filepath=%s' % filepath) if not audio_modules['wave']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_wave() self.sf = wave.open(filepath, 'r') self.filepath = filepath self.samplerate = float(self.sf.getframerate()) sampwidth = self.sf.getsampwidth() if sampwidth == 1: self.dtype = 'u1' else: self.dtype = 'i%d' % sampwidth self.factor = 1.0/(2.0**(sampwidth*8-1)) self.channels = self.sf.getnchannels() self.frames = self.sf.getnframes() self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_wave self.load_buffer = self._load_buffer_wave self.metadata = self._metadata_wave # read 1 frame to determine the unit of the position values: self.p0 = self.sf.tell() self.sf.readframes(1) self.pfac = self.sf.tell() - self.p0 self.sf.setpos(self.p0) return self
def open_ewave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the ewave module.
Parameters
filepath
:string
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The ewave module is not installed.
Expand source code
def open_ewave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the ewave module. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The ewave module is not installed. """ self.verbose = verbose if self.verbose > 0: print('open_ewave(filepath) with filepath=%s' % filepath) if not audio_modules['ewave']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_ewave() self.sf = ewave.open(filepath, 'r') self.filepath = filepath self.samplerate = float(self.sf.sampling_rate) self.channels = self.sf.nchannels self.frames = self.sf.nframes self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_ewave self.load_buffer = self._load_buffer_ewave self.metadata = self._metadata_wave return self
def open_soundfile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the SoundFile module.
Parameters
filepath
:string
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The SoundFile module is not installed
Expand source code
def open_soundfile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the SoundFile module. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The SoundFile module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_soundfile(filepath) with filepath=%s' % filepath) if not audio_modules['soundfile']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_soundfile() self.sf = soundfile.SoundFile(filepath, 'r') self.filepath = filepath self.samplerate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = 0 if self.sf.seekable(): self.frames = self.sf.seek(0, soundfile.SEEK_END) self.sf.seek(0, soundfile.SEEK_SET) # TODO: if not seekable, we cannot handle that file! self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_soundfile self.load_buffer = self._load_buffer_soundfile return self
def open_wavefile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the wavefile module.
Parameters
filepath
:string
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The wavefile module is not installed
Expand source code
def open_wavefile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the wavefile module. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The wavefile module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_wavefile(filepath) with filepath=%s' % filepath) if not audio_modules['wavefile']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_wavefile() self.sf = wavefile.WaveReader(filepath) self.filepath = filepath self.samplerate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = self.sf.frames self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.close = self._close_wavefile self.load_buffer = self._load_buffer_wavefile return self
def open_audioread(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the audioread module.
Note, that audioread can only read forward, therefore random and backward access is really slow.
Parameters
filepath
:string
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The audioread module is not installed
Expand source code
def open_audioread(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the audioread module. Note, that audioread can only read forward, therefore random and backward access is really slow. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The audioread module is not installed """ self.verbose = verbose if self.verbose > 0: print('open_audio_read(filepath) with filepath=%s' % filepath) if not audio_modules['audioread']: self.samplerate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_audioread() self.sf = audioread.audio_open(filepath) self.filepath = filepath self.samplerate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = int(np.ceil(self.samplerate*self.sf.duration)) self.shape = (self.frames, self.channels) self.buffersize = int(buffersize*self.samplerate) self.backsize = int(backsize*self.samplerate) self._init_buffer() self.read_buffer = np.zeros((0,0)) self.read_offset = 0 self.close = self._close_audioread self.load_buffer = self._load_buffer_audioread self.filepath = filepath self.sf_iter = self.sf.__iter__() return self
def open(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading.
Parameters
filepath
:string
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ValueError
- Empty
filepath
. FileNotFoundError
filepath
is not an existing file.EOFError
- File size of
filepath
is zero. IOError
- Failed to load data.
Expand source code
def open(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading. Parameters ---------- filepath: string Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ValueError Empty `filepath`. FileNotFoundError `filepath` is not an existing file. EOFError File size of `filepath` is zero. IOError Failed to load data. """ self.buffer = np.array([]) self.samplerate = 0.0 if len(filepath) == 0: raise ValueError('input argument filepath is empty string!') if not os.path.isfile(filepath): raise FileNotFoundError('file "%s" not found' % filepath) if os.path.getsize(filepath) <= 0: raise EOFError('file "%s" is empty (size=0)!' % filepath) # list of implemented open functions: audio_open = [ ['soundfile', self.open_soundfile], ['audioread', self.open_audioread], ['wave', self.open_wave], ['wavefile', self.open_wavefile], ['ewave', self.open_ewave] ] # open an audio file by trying various modules: success = False not_installed = [] for lib, open_file in audio_open: if not audio_modules[lib]: if verbose > 1: print('failed to load data from file "%s" using %s module' % (filepath, lib)) not_installed.append(lib) continue try: open_file(filepath, buffersize, backsize, verbose-1) if self.frames > 0: success = True if verbose > 0: print('opened audio file "%s" using %s' % (filepath, lib)) if verbose > 1: print(' sampling rate: %g Hz' % self.samplerate) print(' data values : %d' % self.frames) break except Exception as e: pass if not success: need_install = "" if len(not_installed) > 0: need_install = " You may need to install one of the " + \ ', '.join(not_installed) + " packages." raise IOError('failed to load data from file "%s".%s' % (filepath, need_install)) return self
Inherited members