Module audioio.audioloader
Loading data, metadata, and markers from audio files.
load_audio()
: load a whole audio file at once.metadata()
: read metadata of an audio file.markers()
: read markers of an audio file.- class
AudioLoader
: read data from audio files in chunks.
The read in data are always numpy arrays of floats ranging between -1 and 1. The arrays are 2-D ndarrays with first axis time and second axis channel, even for single channel data.
If an audio file cannot be loaded, you might need to install additional packages. See installation for further instructions.
For a demo run the module as:
python -m src.audioio.audioloader audiofile.wav
Global variables
var audio_loader_funcs
-
List of implemented load() functions.
Each element of the list is a tuple with the module's name and its load() function.
Functions
def main(*args)
-
Call demo with command line arguments.
Parameters
args
:list
ofstr
- Command line arguments as provided by sys.argv[1:]
def load_wave(filepath)
-
Load wav file using the wave module from pythons standard libray.
Documentation
https://docs.python.org/3.8/library/wave.html
Parameters
filepath
:str
- The full path and name of the file to load.
Returns
data
:ndarray
- All data traces as an 2-D ndarray, first dimension is time, second is channel
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The wave module is not installed
* Loading of the data failed
def load_ewave(filepath)
-
Load wav file using ewave module.
Documentation
https://github.com/melizalab/py-ewave
Parameters
filepath
:str
- The full path and name of the file to load.
Returns
data
:ndarray
- All data traces as an 2-D ndarray, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The ewave module is not installed
* Loading of the data failed
def load_wavfile(filepath)
-
Load wav file using scipy.io.wavfile.
Documentation
http://docs.scipy.org/doc/scipy/reference/io.html Does not support blocked read.
Parameters
filepath
:str
- The full path and name of the file to load.
Returns
data
:ndarray
- All data traces as an 2-D ndarray, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The scipy.io module is not installed
* Loading of the data failed
def load_soundfile(filepath)
-
Load audio file using SoundFile (based on libsndfile).
Documentation
http://pysoundfile.readthedocs.org http://www.mega-nerd.com/libsndfile
Parameters
filepath
:str
- The full path and name of the file to load.
Returns
data
:ndarray
- All data traces as an 2-D ndarray, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The soundfile module is not installed.
* Loading of the data failed.
def load_wavefile(filepath)
-
Load audio file using wavefile (based on libsndfile).
Documentation
https://github.com/vokimon/python-wavefile
Parameters
filepath
:str
- The full path and name of the file to load.
Returns
data
:ndarray
- All data traces as an 2-D ndarray, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The wavefile module is not installed.
* Loading of the data failed.
def load_audioread(filepath)
-
Load audio file using audioread.
Documentation
https://github.com/beetbox/audioread
Parameters
filepath
:str
- The full path and name of the file to load.
Returns
data
:ndarray
- All data traces as an 2-D ndarray, first dimension is time, second is channel.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ImportError
- The audioread module is not installed.
* Loading of the data failed.
def load_audio(filepath, verbose=0)
-
Call this function to load all channels of audio data from a file.
This function tries different python modules to load the audio file.
Parameters
filepath
:str
- The full path and name of the file to load.
verbose
:int
- If larger than zero show detailed error/warning messages.
Returns
data
:ndarray
- All data traces as an 2-D ndarray, even for single channel data. First dimension is time, second is channel. Data values range maximally between -1 and 1.
rate
:float
- The sampling rate of the data in Hertz.
Raises
ValueError
- Empty
filepath
. FileNotFoundError
filepath
is not an existing file.EOFError
- File size of
filepath
is zero. IOError
- Failed to load data.
Examples
import matplotlib.pyplot as plt from audioio import load_audio data, rate = load_audio('some/audio.wav') plt.plot(np.arange(len(data))/rate, data[:,0]) plt.show()
def metadata(filepath, store_empty=False)
-
Read metadata of an audio file.
Parameters
filepath
:str
orfile handle
- The audio file from which to read metadata.
store_empty
:bool
- If
False
do not return meta data with empty values.
Returns
meta_data
:nested dict
- Meta data contained in the audio file.
Keys of the nested
dictionaries are always strings.
If the corresponding values
are dictionaries, then the key is the section name of the
metadata contained in the dictionary. All other types of
values are values for the respective key. In particular they
are strings. But other types like for example ints or floats
are also allowed.
See
audioio.audiometadata
module for available functions to work with such metadata.
Examples
from audioio import metadata, print_metadata md = metadata('data.wav') print_metadata(md)
def markers(filepath)
-
Read markers of an audio file.
See
audioio.audiomarkers
module for available functions to work with markers.Parameters
filepath
:str
orfile handle
- The audio file.
Returns
locs
:2-D ndarray
ofint
- Marker positions (first column) and spans (second column) for each marker (rows).
labels
:2-D ndarray
ofstring objects
- Labels (first column) and texts (second column) for each marker (rows).
Examples
from audioio import markers, print_markers locs, labels = markers('data.wav') print_markers(locs, labels)
def demo(file_path, plot)
-
Demo of the audioloader functions.
Parameters
file_path
:str
- File path of an audio file.
plot
:bool
- If True also plot the loaded data.
Classes
class AudioLoader (filepath=None, buffersize=10.0, backsize=0.0, verbose=0, **meta_kwargs)
-
Buffered reading of audio data for random access of the data in the file.
The class allows for reading very large audio files that do not fit into memory. An AudioLoader instance can be used like a huge read-only numpy array, i.e.
data = AudioLoader('path/to/audio/file.wav') x = data[10000:20000,0]
The first index specifies the frame, the second one the channel.
Behind the scenes,
AudioLoader
tries to open the audio file with all available audio modules until it succeeds (first line). It then reads data from the file as necessary for the requested data (second line). Accesing the content of the audio files via a buffer that holds only a part of the data is managed by theBufferedArray
class.Reading sequentially through the file is always possible. Some modules, however, (e.g. audioread, needed for mp3 files) can only read forward. If previous data are requested, then the file is read from the beginning again. This slows down access to previous data considerably. Use the
backsize
argument of the open function to make sure some data are loaded into the buffer before the requested frame. Then a subsequent access to the data withinbacksize
seconds before that frame can still be handled without the need to reread the file from the beginning.Usage
With context management:
import audioio as aio with aio.AudioLoader(filepath, 60.0, 10.0) as data: # do something with the content of the file: x = data[0:10000] y = data[10000:20000] z = x + y
For using a specific audio module, here the audioread module:
data = aio.AudioLoader() with data.open_audioread(filepath, 60.0, 10.0): # do something ...
Use
blocks()
for sequential, blockwise reading and processing:from scipy.signal import spectrogram nfft = 2048 with aio.AudioLoader('some/audio.wav') as data: for x in data.blocks(100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.rate, nperseg=nfft, noverlap=nfft//2)
For loop iterates over single frames (1-D arrays containing samples for each channel):
with aio.AudioLoader('some/audio.wav') as data: for x in data: print(x)
Traditional open and close:
data = aio.AudioLoader(filepath, 60.0) x = data[:,:] # read the whole file data.close()
this is the same as:
data = aio.AudioLoader() data.open(filepath, 60.0) ...
Classes inheriting AudioLoader just need to implement
self.load_audio_buffer(offset, nsamples, pbuffer)
This function needs to load the supplied
pbuffer
withnframes
frames of data starting at frameoffset
.In the constructor or some kind of opening function, you need to set some member variables, as described for
BufferedArray
.Parameters
filepath
:str
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
store_empty
:bool
- If
False
do not return meta data with empty values.
Attributes
filepath
:str
- Path and name of the file.
rate
:float
- The sampling rate of the data in seconds.
channels
:int
- The number of channels.
frames
:int
- The number of frames in the file. Same as
len()
. format
:str
orNone
- Format of the audio file.
encoding
:str
orNone
- Encoding/subtype of the audio file.
shape
:tuple
- Frames and channels of the data.
ndim
:int
- Number of dimensions: always 2 (frames and channels).
offset
:int
- Index of first frame in the current buffer.
buffer
:ndarray
offloats
- The curently available data from the file.
ampl_min
:float
- Minimum amplitude the file format supports. Always -1.0 for audio data.
ampl_max
:float
- Maximum amplitude the file format supports. Always +1.0 for audio data.
Methods
len()
: Number of frames.open()
: Open an audio file by trying available audio modules.open_*()
: Open an audio file with the respective audio module.__getitem__
: Access data of the audio file.update_buffer()
: Update the internal buffer for a range of frames.blocks()
: Generator for blockwise processing of AudioLoader data.format_dict()
: technical infos about how the data are stored.metadata()
: Metadata stored along with the audio data.markers()
: Markers stored along with the audio data.set_unwrap()
: Set parameters for unwrapping clipped data.close()
: Close the file.
Notes
Access via
__getitem__
or__next__
is slow! Even worse, using numpy functions on this class first converts it to a numpy array - that is something we actually do not want! We should subclass directly from numpy.ndarray . For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html When subclassing, there is an offset argument, that might help to speed up__getitem__
.Construtor for initializing 2D arrays (times x channels).
Expand source code
class AudioLoader(BufferedArray): """Buffered reading of audio data for random access of the data in the file. The class allows for reading very large audio files that do not fit into memory. An AudioLoader instance can be used like a huge read-only numpy array, i.e. ``` data = AudioLoader('path/to/audio/file.wav') x = data[10000:20000,0] ``` The first index specifies the frame, the second one the channel. Behind the scenes, `AudioLoader` tries to open the audio file with all available audio modules until it succeeds (first line). It then reads data from the file as necessary for the requested data (second line). Accesing the content of the audio files via a buffer that holds only a part of the data is managed by the `BufferedArray` class. Reading sequentially through the file is always possible. Some modules, however, (e.g. audioread, needed for mp3 files) can only read forward. If previous data are requested, then the file is read from the beginning again. This slows down access to previous data considerably. Use the `backsize` argument of the open function to make sure some data are loaded into the buffer before the requested frame. Then a subsequent access to the data within `backsize` seconds before that frame can still be handled without the need to reread the file from the beginning. Usage ----- With context management: ``` import audioio as aio with aio.AudioLoader(filepath, 60.0, 10.0) as data: # do something with the content of the file: x = data[0:10000] y = data[10000:20000] z = x + y ``` For using a specific audio module, here the audioread module: ``` data = aio.AudioLoader() with data.open_audioread(filepath, 60.0, 10.0): # do something ... ``` Use `blocks()` for sequential, blockwise reading and processing: ``` from scipy.signal import spectrogram nfft = 2048 with aio.AudioLoader('some/audio.wav') as data: for x in data.blocks(100*nfft, nfft//2): f, t, Sxx = spectrogram(x, fs=data.rate, nperseg=nfft, noverlap=nfft//2) ``` For loop iterates over single frames (1-D arrays containing samples for each channel): ``` with aio.AudioLoader('some/audio.wav') as data: for x in data: print(x) ``` Traditional open and close: ``` data = aio.AudioLoader(filepath, 60.0) x = data[:,:] # read the whole file data.close() ``` this is the same as: ``` data = aio.AudioLoader() data.open(filepath, 60.0) ... ``` Classes inheriting AudioLoader just need to implement ``` self.load_audio_buffer(offset, nsamples, pbuffer) ``` This function needs to load the supplied `pbuffer` with `nframes` frames of data starting at frame `offset`. In the constructor or some kind of opening function, you need to set some member variables, as described for `BufferedArray`. Parameters ---------- filepath: str Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. store_empty: bool If `False` do not return meta data with empty values. Attributes ---------- filepath: str Path and name of the file. rate: float The sampling rate of the data in seconds. channels: int The number of channels. frames: int The number of frames in the file. Same as `len()`. format: str or None Format of the audio file. encoding: str or None Encoding/subtype of the audio file. shape: tuple Frames and channels of the data. ndim: int Number of dimensions: always 2 (frames and channels). offset: int Index of first frame in the current buffer. buffer: ndarray of floats The curently available data from the file. ampl_min: float Minimum amplitude the file format supports. Always -1.0 for audio data. ampl_max: float Maximum amplitude the file format supports. Always +1.0 for audio data. Methods ------- - `len()`: Number of frames. - `open()`: Open an audio file by trying available audio modules. - `open_*()`: Open an audio file with the respective audio module. - `__getitem__`: Access data of the audio file. - `update_buffer()`: Update the internal buffer for a range of frames. - `blocks()`: Generator for blockwise processing of AudioLoader data. - `format_dict()`: technical infos about how the data are stored. - `metadata()`: Metadata stored along with the audio data. - `markers()`: Markers stored along with the audio data. - `set_unwrap()`: Set parameters for unwrapping clipped data. - `close()`: Close the file. Notes ----- Access via `__getitem__` or `__next__` is slow! Even worse, using numpy functions on this class first converts it to a numpy array - that is something we actually do not want! We should subclass directly from numpy.ndarray . For details see http://docs.scipy.org/doc/numpy/user/basics.subclassing.html When subclassing, there is an offset argument, that might help to speed up `__getitem__` . """ def __init__(self, filepath=None, buffersize=10.0, backsize=0.0, verbose=0, **meta_kwargs): super().__init__(verbose=verbose) self.format = None self.encoding = None self._metadata = None self._locs = None self._labels = None self._load_metadata = metadata self._load_markers = markers self._metadata_kwargs = meta_kwargs self.filepath = None self.sf = None self.close = self._close self.load_buffer = self._load_buffer_unwrap self.ampl_min = -1.0 self.ampl_max = +1.0 self.unwrap = False self.unwrap_thresh = 0.0 self.unwrap_clips = False self.unwrap_ampl = 1.0 self.unwrap_downscale = True if filepath is not None: self.open(filepath, buffersize, backsize, verbose) numpy_encodings = {np.dtype(np.int64): 'PCM_64', np.dtype(np.int32): 'PCM_32', np.dtype(np.int16): 'PCM_16', np.dtype(np.single): 'FLOAT', np.dtype(np.double): 'DOUBLE', np.dtype('>f4'): 'FLOAT', np.dtype('>f8'): 'DOUBLE'} """ Map numpy dtypes to encodings. """ def _close(self): pass def __del__(self): self.close() def format_dict(self): """ Technical infos about how the data are stored in the file. Returns ------- fmt: dict Dictionary with filepath, format, encoding, samplingrate, channels, frames, and duration of the audio file as strings. """ fmt = dict(filepath=self.filepath) if self.format is not None: fmt['format'] = self.format if self.encoding is not None: fmt['encoding'] = self.encoding fmt.update(dict(samplingrate=f'{self.rate:.0f}Hz', channels=self.channels, frames=self.frames, duration=f'{self.frames/self.rate:.3f}s')) return fmt def metadata(self): """Metadata of the audio file. Parameters ---------- store_empty: bool If `False` do not add meta data with empty values. Returns ------- meta_data: nested dict Meta data contained in the audio file. Keys of the nested dictionaries are always strings. If the corresponding values are dictionaries, then the key is the section name of the metadata contained in the dictionary. All other types of values are values for the respective key. In particular they are strings. But other types like for example ints or floats are also allowed. See `audioio.audiometadata` module for available functions to work with such metadata. """ if self._metadata is None: if self._load_metadata is None: self._metadata = {} else: self._metadata = self._load_metadata(self.filepath, **self._metadata_kwargs) return self._metadata def markers(self): """Read markers of the audio file. See `audioio.audiomarkers` module for available functions to work with markers. Returns ------- locs: 2-D ndarray of int Marker positions (first column) and spans (second column) for each marker (rows). labels: 2-D ndarray of str objects Labels (first column) and texts (second column) for each marker (rows). """ if self._locs is None: if self._load_markers is None: self._locs = np.zeros((0, 2), dtype=int) self._labels = np.zeros((0, 2), dtype=object) else: self._locs, self._labels = self._load_markers(self.filepath) return self._locs, self._labels def set_unwrap(self, thresh, clips=False, down_scale=True, unit=''): """Set parameters for unwrapping clipped data. See unwrap() function from the audioio package. Parameters ---------- thresh: float Threshold for detecting wrapped data relative to self.unwrap_ampl which is initially set to self.ampl_max. If zero, do not unwrap. clips: bool If True, then clip the unwrapped data properly. Otherwise, unwrap the data and double the minimum and maximum data range (self.ampl_min and self.ampl_max). down_scale: bool If not `clip`, then downscale the signal by a factor of two, in order to keep the range between -1 and 1. unit: str Unit of the data. """ self.unwrap_ampl = self.ampl_max self.unwrap_thresh = thresh self.unwrap_clips = clips self.unwrap_down_scale = down_scale self.unwrap = thresh > 1e-3 if self.unwrap: if self.unwrap_clips: add_unwrap(self.metadata(), self.unwrap_thresh*self.unwrap_ampl, self.unwrap_ampl, unit) elif down_scale: update_gain(self.metadata(), 0.5) add_unwrap(self.metadata(), 0.5*self.unwrap_thresh*self.unwrap_ampl, 0.0, unit) else: self.ampl_min *= 2 self.ampl_max *= 2 add_unwrap(self.metadata(), self.unwrap_thresh*self.unwrap_ampl, 0.0, unit) def _load_buffer_unwrap(self, r_offset, r_size, pbuffer): """Load new data and unwrap it. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. pbuffer: ndarray Buffer where to store the loaded data. """ self.load_audio_buffer(r_offset, r_size, pbuffer) if self.unwrap: # TODO: handle edge effects! unwrap(pbuffer, self.unwrap_thresh, self.unwrap_ampl) if self.unwrap_clips: pbuffer[pbuffer > self.ampl_max] = self.ampl_max pbuffer[pbuffer < self.ampl_min] = self.ampl_min elif self.unwrap_down_scale: pbuffer *= 0.5 # wave interface: def open_wave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the wave module. Note: we assume that setpos() and tell() use integer numbers! Parameters ---------- filepath: str Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The wave module is not installed """ self.verbose = verbose if self.verbose > 0: print(f'open_wave(filepath) with filepath={filepath}') if not audio_modules['wave']: self.rate = 0.0 self.channels = 0 self.frames = 0 self.size = 0 self.shape = (0, 0) self.offset = 0 raise ImportError if self.sf is not None: self._close_wave() self.sf = wave.open(filepath, 'r') self.filepath = filepath self.rate = float(self.sf.getframerate()) self.format = 'WAV' sampwidth = self.sf.getsampwidth() if sampwidth == 1: self.dtype = 'u1' self.encoding = 'PCM_U8' else: self.dtype = f'i{sampwidth}' self.encoding = f'PCM_{sampwidth*8}' self.factor = 1.0/(2.0**(sampwidth*8-1)) self.channels = self.sf.getnchannels() self.frames = self.sf.getnframes() self.shape = (self.frames, self.channels) self.size = self.frames * self.channels self.bufferframes = int(buffersize*self.rate) self.backframes = int(backsize*self.rate) self.init_buffer() self.close = self._close_wave self.load_audio_buffer = self._load_buffer_wave # read 1 frame to determine the unit of the position values: self.p0 = self.sf.tell() self.sf.readframes(1) self.pfac = self.sf.tell() - self.p0 self.sf.setpos(self.p0) return self def _close_wave(self): """Close the audio file using the wave module. """ if self.sf is not None: self.sf.close() self.sf = None def _load_buffer_wave(self, r_offset, r_size, buffer): """Load new data from file using the wave module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ self.sf.setpos(r_offset*self.pfac + self.p0) fbuffer = self.sf.readframes(r_size) fbuffer = np.frombuffer(fbuffer, dtype=self.dtype).reshape((-1, self.channels)) if self.dtype[0] == 'u': buffer[:, :] = fbuffer * self.factor - 1.0 else: buffer[:, :] = fbuffer * self.factor # ewave interface: def open_ewave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the ewave module. Parameters ---------- filepath: str Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The ewave module is not installed. """ self.verbose = verbose if self.verbose > 0: print(f'open_ewave(filepath) with filepath={filepath}') if not audio_modules['ewave']: self.rate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.size = 0 self.offset = 0 raise ImportError if self.sf is not None: self._close_ewave() self.sf = ewave.open(filepath, 'r') self.filepath = filepath self.rate = float(self.sf.sampling_rate) self.channels = self.sf.nchannels self.frames = self.sf.nframes self.shape = (self.frames, self.channels) self.size = self.frames * self.channels self.format = 'WAV' # or WAVEX? self.encoding = self.numpy_encodings[self.sf.dtype] self.bufferframes = int(buffersize*self.rate) self.backframes = int(backsize*self.rate) self.init_buffer() self.close = self._close_ewave self.load_audio_buffer = self._load_buffer_ewave return self def _close_ewave(self): """Close the audio file using the ewave module. """ if self.sf is not None: del self.sf self.sf = None def _load_buffer_ewave(self, r_offset, r_size, buffer): """Load new data from file using the ewave module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ fbuffer = self.sf.read(frames=r_size, offset=r_offset, memmap='r') fbuffer = ewave.rescale(fbuffer, 'float') if len(fbuffer.shape) == 1: fbuffer = np.reshape(fbuffer,(-1, 1)) buffer[:,:] = fbuffer # soundfile interface: def open_soundfile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the SoundFile module. Parameters ---------- filepath: str Name of the file. bufferframes: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The SoundFile module is not installed """ self.verbose = verbose if self.verbose > 0: print(f'open_soundfile(filepath) with filepath={filepath}') if not audio_modules['soundfile']: self.rate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.size = 0 self.offset = 0 raise ImportError if self.sf is not None: self._close_soundfile() self.sf = soundfile.SoundFile(filepath, 'r') self.filepath = filepath self.rate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = 0 self.size = 0 if self.sf.seekable(): self.frames = self.sf.seek(0, soundfile.SEEK_END) self.sf.seek(0, soundfile.SEEK_SET) # TODO: if not seekable, we cannot handle that file! self.shape = (self.frames, self.channels) self.size = self.frames * self.channels self.format = self.sf.format self.encoding = self.sf.subtype self.bufferframes = int(buffersize*self.rate) self.backframes = int(backsize*self.rate) self.init_buffer() self.close = self._close_soundfile self.load_audio_buffer = self._load_buffer_soundfile return self def _close_soundfile(self): """Close the audio file using the SoundFile module. """ if self.sf is not None: self.sf.close() self.sf = None def _load_buffer_soundfile(self, r_offset, r_size, buffer): """Load new data from file using the SoundFile module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ self.sf.seek(r_offset, soundfile.SEEK_SET) buffer[:, :] = self.sf.read(r_size, always_2d=True) # wavefile interface: def open_wavefile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the wavefile module. Parameters ---------- filepath: str Name of the file. bufferframes: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The wavefile module is not installed """ self.verbose = verbose if self.verbose > 0: print(f'open_wavefile(filepath) with filepath={filepath}') if not audio_modules['wavefile']: self.rate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.size = 0 self.offset = 0 raise ImportError if self.sf is not None: self._close_wavefile() self.sf = wavefile.WaveReader(filepath) self.filepath = filepath self.rate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = self.sf.frames self.shape = (self.frames, self.channels) self.size = self.frames * self.channels # get format and encoding: for attr in dir(wavefile.Format): v = getattr(wavefile.Format, attr) if isinstance(v, int): if v & wavefile.Format.TYPEMASK > 0 and \ (self.sf.format & wavefile.Format.TYPEMASK) == v: self.format = attr if v & wavefile.Format.SUBMASK > 0 and \ (self.sf.format & wavefile.Format.SUBMASK) == v: self.encoding = attr # init buffer: self.bufferframes = int(buffersize*self.rate) self.backframes = int(backsize*self.rate) self.init_buffer() self.close = self._close_wavefile self.load_audio_buffer = self._load_buffer_wavefile return self def _close_wavefile(self): """Close the audio file using the wavefile module. """ if self.sf is not None: self.sf.close() self.sf = None def _load_buffer_wavefile(self, r_offset, r_size, buffer): """Load new data from file using the wavefile module. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ self.sf.seek(r_offset, wavefile.Seek.SET) fbuffer = self.sf.buffer(r_size, dtype=self.buffer.dtype) self.sf.read(fbuffer) buffer[:,:] = fbuffer.T # audioread interface: def open_audioread(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading using the audioread module. Note, that audioread can only read forward, therefore random and backward access is really slow. Parameters ---------- filepath: str Name of the file. bufferframes: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ImportError The audioread module is not installed """ self.verbose = verbose if self.verbose > 0: print(f'open_audioread(filepath) with filepath={filepath}') if not audio_modules['audioread']: self.rate = 0.0 self.channels = 0 self.frames = 0 self.shape = (0, 0) self.size = 0 self.offset = 0 raise ImportError if self.sf is not None: self._close_audioread() self.sf = audioread.audio_open(filepath) self.filepath = filepath self.rate = float(self.sf.samplerate) self.channels = self.sf.channels self.frames = int(np.ceil(self.rate*self.sf.duration)) self.shape = (self.frames, self.channels) self.size = self.frames * self.channels self.bufferframes = int(buffersize*self.rate) self.backframes = int(backsize*self.rate) self.init_buffer() self.read_buffer = np.zeros((0,0)) self.read_offset = 0 self.close = self._close_audioread self.load_audio_buffer = self._load_buffer_audioread self.filepath = filepath self.sf_iter = self.sf.__iter__() return self def _close_audioread(self): """Close the audio file using the audioread module. """ if self.sf is not None: self.sf.__exit__(None, None, None) self.sf = None def _load_buffer_audioread(self, r_offset, r_size, buffer): """Load new data from file using the audioread module. audioread can only iterate through a file once and in blocksizes that are given by audioread. Therefore we keep yet another buffer: `self.read_buffer` at file offset `self.read_offset` containing whatever audioread returned. Parameters ---------- r_offset: int First frame to be read from file. r_size: int Number of frames to be read from file. buffer: ndarray Buffer where to store the loaded data. """ b_offset = 0 if ( self.read_offset + self.read_buffer.shape[0] >= r_offset + r_size and self.read_offset < r_offset + r_size ): # read_buffer overlaps at the end of the requested interval: i = 0 n = r_offset + r_size - self.read_offset if n > r_size: i += n - r_size n = r_size buffer[self.read_offset+i-r_offset:self.read_offset+i+n-r_offset,:] = self.read_buffer[i:i+n,:] / (2.0**15-1.0) if self.verbose > 2: print(f' recycle {n:6d} frames from the front of the read buffer at {self.read_offset}-{self.read_offset+n} ({self.read_offset-self.offset}-{self.read_offset-self.offset+n} in buffer)') r_size -= n if r_size <= 0: return # go back to beginning of file: if r_offset < self.read_offset: if self.verbose > 2: print(' rewind') self._close_audioread() self.sf = audioread.audio_open(self.filepath) self.sf_iter = self.sf.__iter__() self.read_buffer = np.zeros((0,0)) self.read_offset = 0 # read to position: while self.read_offset + self.read_buffer.shape[0] < r_offset: self.read_offset += self.read_buffer.shape[0] try: if hasattr(self.sf_iter, 'next'): fbuffer = self.sf_iter.next() else: fbuffer = next(self.sf_iter) except StopIteration: self.read_buffer = np.zeros((0,0)) buffer[:,:] = 0.0 if self.verbose > 1: print(f' caught StopIteration, padded buffer with {r_size} zeros') break self.read_buffer = np.frombuffer(fbuffer, dtype='<i2').reshape(-1, self.channels) if self.verbose > 2: print(f' read forward by {self.read_buffer.shape[0]} frames') # recycle file data: if ( self.read_offset + self.read_buffer.shape[0] > r_offset and self.read_offset <= r_offset ): i = r_offset - self.read_offset n = self.read_offset + self.read_buffer.shape[0] - r_offset if n > r_size: n = r_size buffer[:n,:] = self.read_buffer[i:i+n,:] / (2.0**15-1.0) if self.verbose > 2: print(f' recycle {n:6d} frames from the end of the read buffer at {self.read_offset}-{self.read_offset + self.read_buffer.shape[0]} to {r_offset}-{r_offset+n} ({r_offset-self.offset}-{r_offset+n-self.offset} in buffer)') b_offset += n r_offset += n r_size -= n # read data: if self.verbose > 2 and r_size > 0: print(f' read {r_size:6d} frames at {r_offset}-{r_offset+r_size} ({r_offset-self.offset}-{r_offset+r_size-self.offset} in buffer)') while r_size > 0: self.read_offset += self.read_buffer.shape[0] try: if hasattr(self.sf_iter, 'next'): fbuffer = self.sf_iter.next() else: fbuffer = next(self.sf_iter) except StopIteration: self.read_buffer = np.zeros((0,0)) buffer[b_offset:,:] = 0.0 if self.verbose > 1: print(f' caught StopIteration, padded buffer with {r_size} zeros') break self.read_buffer = np.frombuffer(fbuffer, dtype='<i2').reshape(-1, self.channels) n = self.read_buffer.shape[0] if n > r_size: n = r_size if n > 0: buffer[b_offset:b_offset+n,:] = self.read_buffer[:n,:] / (2.0**15-1.0) if self.verbose > 2: print(f' read {n:6d} frames to {r_offset}-{r_offset+n} ({r_offset-self.offset}-{r_offset+n-self.offset} in buffer)') b_offset += n r_offset += n r_size -= n def open(self, filepath, buffersize=10.0, backsize=0.0, verbose=0): """Open audio file for reading. Parameters ---------- filepath: str Name of the file. buffersize: float Size of internal buffer in seconds. backsize: float Part of the buffer to be loaded before the requested start index in seconds. verbose: int If larger than zero show detailed error/warning messages. Raises ------ ValueError Empty `filepath`. FileNotFoundError `filepath` is not an existing file. EOFError File size of `filepath` is zero. IOError Failed to load data. """ self.buffer = np.array([]) self.rate = 0.0 if not filepath: raise ValueError('input argument filepath is empty string!') if not os.path.isfile(filepath): raise FileNotFoundError(f'file "{filepath}" not found') if os.path.getsize(filepath) <= 0: raise EOFError(f'file "{filepath}" is empty (size=0)!') # list of implemented open functions: audio_open_funcs = ( ('soundfile', self.open_soundfile), ('wave', self.open_wave), ('wavefile', self.open_wavefile), ('ewave', self.open_ewave), ('audioread', self.open_audioread), ) # open an audio file by trying various modules: not_installed = [] errors = [f'failed to load data from file "{filepath}":'] for lib, open_file in audio_open_funcs: if not audio_modules[lib]: if verbose > 1: print(f'unable to load data from file "{filepath}" using {lib} module: module not available') not_installed.append(lib) continue try: open_file(filepath, buffersize, backsize, verbose-1) if self.frames > 0: if verbose > 0: print(f'opened audio file "{filepath}" using {lib}') if verbose > 1: if self.format is not None: print(f' format : {self.format}') if self.encoding is not None: print(f' encoding : {self.encoding}') print(f' sampling rate: {self.rate} Hz') print(f' channels : {self.channels}') print(f' frames : {self.frames}') return self except Exception as e: errors.append(f' {lib} failed: {str(e)}') if verbose > 1: print(errors[-1]) if len(not_installed) > 0: errors.append('\n You may need to install one of the ' + \ ', '.join(not_installed) + ' packages.') raise IOError('\n'.join(errors)) return self
Ancestors
Class variables
var numpy_encodings
-
Map numpy dtypes to encodings.
Methods
def format_dict(self)
-
Technical infos about how the data are stored in the file.
Returns
fmt
:dict
- Dictionary with filepath, format, encoding, samplingrate, channels, frames, and duration of the audio file as strings.
def metadata(self)
-
Metadata of the audio file.
Parameters
store_empty
:bool
- If
False
do not add meta data with empty values.
Returns
meta_data
:nested dict
- Meta data contained in the audio file.
Keys of the nested
dictionaries are always strings.
If the corresponding
values are dictionaries, then the key is the section name
of the metadata contained in the dictionary. All other
types of values are values for the respective key. In
particular they are strings. But other types like for
example ints or floats are also allowed.
See
audioio.audiometadata
module for available functions to work with such metadata.
def markers(self)
-
Read markers of the audio file.
See
audioio.audiomarkers
module for available functions to work with markers.Returns
locs
:2-D ndarray
ofint
- Marker positions (first column) and spans (second column) for each marker (rows).
labels
:2-D ndarray
ofstr objects
- Labels (first column) and texts (second column) for each marker (rows).
def set_unwrap(self, thresh, clips=False, down_scale=True, unit='')
-
Set parameters for unwrapping clipped data.
See unwrap() function from the audioio package.
Parameters
thresh
:float
- Threshold for detecting wrapped data relative to self.unwrap_ampl which is initially set to self.ampl_max. If zero, do not unwrap.
clips
:bool
- If True, then clip the unwrapped data properly. Otherwise, unwrap the data and double the minimum and maximum data range (self.ampl_min and self.ampl_max).
down_scale
:bool
- If not
clip
, then downscale the signal by a factor of two, in order to keep the range between -1 and 1. unit
:str
- Unit of the data.
def open_wave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the wave module.
Note: we assume that setpos() and tell() use integer numbers!
Parameters
filepath
:str
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The wave module is not installed
def open_ewave(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the ewave module.
Parameters
filepath
:str
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The ewave module is not installed.
def open_soundfile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the SoundFile module.
Parameters
filepath
:str
- Name of the file.
bufferframes
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The SoundFile module is not installed
def open_wavefile(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the wavefile module.
Parameters
filepath
:str
- Name of the file.
bufferframes
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The wavefile module is not installed
def open_audioread(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading using the audioread module.
Note, that audioread can only read forward, therefore random and backward access is really slow.
Parameters
filepath
:str
- Name of the file.
bufferframes
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ImportError
- The audioread module is not installed
def open(self, filepath, buffersize=10.0, backsize=0.0, verbose=0)
-
Open audio file for reading.
Parameters
filepath
:str
- Name of the file.
buffersize
:float
- Size of internal buffer in seconds.
backsize
:float
- Part of the buffer to be loaded before the requested start index in seconds.
verbose
:int
- If larger than zero show detailed error/warning messages.
Raises
ValueError
- Empty
filepath
. FileNotFoundError
filepath
is not an existing file.EOFError
- File size of
filepath
is zero. IOError
- Failed to load data.
Inherited members