Coverage for src/audioio/riffmetadata.py: 97%

727 statements  

« prev     ^ index     » next       coverage.py v7.7.0, created at 2025-03-18 22:33 +0000

1"""Read and write meta data and marker lists of riff based files. 

2 

3Container files of the Resource Interchange File Format (RIFF) like 

4WAVE files may contain sections (called chunks) with metadata and 

5markers in addition to the timeseries (audio) data and the necessary 

6specifications of sampling rate, bit depth, etc. 

7 

8## Metadata 

9 

10There are various types of chunks for storing metadata, like the [INFO 

11list](https://www.recordingblogs.com/wiki/list-chunk-of-a-wave-file), 

12[broadcast-audio extension 

13(BEXT)](https://tech.ebu.ch/docs/tech/tech3285.pdf) chunk, or 

14[iXML](http://www.gallery.co.uk/ixml/) chunks. These chunks contain 

15metadata as key-value pairs. Since wave files are primarily designed 

16for music, valid keys in these chunks are restricted to topics from 

17music and music production. Some keys are usefull also for science, 

18but there is need for more keys. It is possible to extend the INFO 

19list keys, but these keys are restricted to four characters and the 

20INFO list chunk does also not allow for hierarchical metadata. The 

21other metadata chunks, in particular the BEXT chunk, cannot be 

22extended. With standard chunks, not all types of metadata can be 

23stored. 

24 

25The [GUANO (Grand Unified Acoustic Notation 

26Ontology)](https://github.com/riggsd/guano-spec), primarily designed 

27for bat acoustic recordings, has some standard ontologies that are of 

28much more interest in scientific context. In addition, GUANO allows 

29for extensions with arbitray nested keys and string encoded values. 

30In that respect it is a well defined and easy to handle serialization 

31of the [odML data model](https://doi.org/10.3389/fninf.2011.00016). 

32We use GUANO to write all metadata that do not fit into the INFO, BEXT 

33or IXML chunks into a WAVE file. 

34 

35To interface the various ways to store and read metadata of RIFF 

36files, the `riffmetadata` module simply uses nested dictionaries. The 

37keys are always strings. Values are strings or integers for key-value 

38pairs. Value strings can also be numbers followed by a unit. Values 

39can also be dictionaries for defining subsections of key-value 

40pairs. The dictionaries can be nested to arbitrary depth. 

41 

42The `write_wave()` function first tries to write an INFO list 

43chunk. It checks for a key "INFO" with a flat dictionary of key value 

44pairs. It then translates all keys of this dictionary using the 

45`info_tags` mapping. If all the resulting keys have no more than four 

46characters and there are no subsections, then an INFO list chunk is 

47written. If no "INFO" key exists, then with the same procedure all 

48elements of the provided metadata are checked for being valid INFO 

49tags, and on success an INFO list chunk is written. Then, in similar 

50ways, `write_wave()` tries to assemble valid BEXT and iXML chunks, 

51based on the tags in `bext_tags` abd `ixml_tags`. All remaining 

52metadata are then stored in an GUANO chunk. 

53 

54When reading metadata from a RIFF file, INFO, BEXT and iXML chunks are 

55returned as subsections with the respective keys. Metadata from an 

56GUANO chunk are stored directly in the metadata dictionary without 

57marking them as GUANO. 

58 

59## Markers 

60 

61A number of different chunk types exist for handling markers or cues 

62that mark specific events or regions in the audio data. In the end, 

63each marker has a position, a span, a label, and a text. Position, 

64and span are handled with 1-D or 2-D arrays of ints, where each row is 

65a marker and the columns are position and span. The span column is 

66optional. Labels and texts come in another 1-D or 2-D array of objects 

67pointing to strings. Again, rows are the markers, first column are the 

68labels, and second column the optional texts. Try to keep the labels 

69short, and use text for longer descriptions, if necessary. 

70 

71## Read metadata and markers 

72 

73- `metadata_riff()`: read metadata from a RIFF/WAVE file. 

74- `markers_riff()`: read markers from a RIFF/WAVE file. 

75 

76## Write data, metadata and markers 

77 

78- `write_wave()`: write time series, metadata and markers to a WAVE file. 

79- `append_metadata_riff()`: append metadata chunks to RIFF file. 

80- `append_markers_riff()`: append marker chunks to RIFF file. 

81- `append_riff()`: append metadata and markers to an existing RIFF file. 

82 

83## Helper functions for reading RIFF and WAVE files 

84 

85- `read_chunk_tags()`: read tags of all chunks contained in a RIFF file. 

86- `read_riff_header()`: read and check the RIFF file header. 

87- `skip_chunk()`: skip over unknown RIFF chunk. 

88- `read_format_chunk()`: read format chunk. 

89- `read_info_chunks()`: read in meta data from info list chunk. 

90- `read_bext_chunk()`: read in metadata from the broadcast-audio extension chunk. 

91- `read_ixml_chunk()`: read in metadata from an IXML chunk. 

92- `read_guano_chunk()`: read in metadata from a GUANO chunk. 

93- `read_cue_chunk()`: read in marker positions from cue chunk. 

94- `read_playlist_chunk()`: read in marker spans from playlist chunk. 

95- `read_adtl_chunks()`: read in associated data list chunks. 

96- `read_lbl_chunk()`: read in marker positions, spans, labels, and texts from lbl chunk. 

97 

98## Helper functions for writing RIFF and WAVE files 

99 

100- `write_riff_chunk()`: write RIFF file header. 

101- `write_filesize()`: write the file size into the RIFF file header. 

102- `write_chunk_name()`: change the name of a chunk. 

103- `write_format_chunk()`: write format chunk. 

104- `write_data_chunk()`: write data chunk. 

105- `write_info_chunk()`: write metadata to LIST INFO chunk. 

106- `write_bext_chunk()`: write metadata to BEXT chunk. 

107- `write_ixml_chunk()`: write metadata to iXML chunk. 

108- `write_guano_chunk()`: write metadata to GUANO chunk. 

109- `write_cue_chunk()`: write marker positions to cue chunk. 

110- `write_playlist_chunk()`: write marker spans to playlist chunk. 

111- `write_adtl_chunks()`: write associated data list chunks. 

112- `write_lbl_chunk()`: write marker positions, spans, labels, and texts to lbl chunk. 

113 

114## Demo 

115 

116- `demo()`: print metadata and marker list of RIFF/WAVE file. 

117- `main()`: call demo with command line arguments. 

118 

119## Descriptions of the RIFF/WAVE file format 

120 

121- https://de.wikipedia.org/wiki/RIFF_WAVE 

122- http://www.piclist.com/techref/io/serial/midi/wave.html 

123- https://moddingwiki.shikadi.net/wiki/Resource_Interchange_File_Format_(RIFF)  

124- https://www.recordingblogs.com/wiki/wave-file-format 

125- http://fhein.users.ak.tu-berlin.de/Alias/Studio/ProTools/audio-formate/wav/overview.html 

126- http://www.gallery.co.uk/ixml/ 

127 

128For INFO tag names see: 

129 

130- see https://exiftool.org/TagNames/RIFF.html#Info%20for%20valid%20info%20tags 

131 

132""" 

133 

134import io 

135import os 

136import sys 

137import warnings 

138import struct 

139import numpy as np 

140import xml.etree.ElementTree as ET 

141from .audiometadata import flatten_metadata, unflatten_metadata, find_key 

142 

143 

144info_tags = dict(AGES='Rated', 

145 CMNT='Comment', 

146 CODE='EncodedBy', 

147 COMM='Comments', 

148 DIRC='Directory', 

149 DISP='SoundSchemeTitle', 

150 DTIM='DateTimeOriginal', 

151 GENR='Genre', 

152 IARL='ArchivalLocation', 

153 IART='Artist', 

154 IAS1='FirstLanguage', 

155 IAS2='SecondLanguage', 

156 IAS3='ThirdLanguage', 

157 IAS4='FourthLanguage', 

158 IAS5='FifthLanguage', 

159 IAS6='SixthLanguage', 

160 IAS7='SeventhLanguage', 

161 IAS8='EighthLanguage', 

162 IAS9='NinthLanguage', 

163 IBSU='BaseURL', 

164 ICAS='DefaultAudioStream', 

165 ICDS='ConstumeDesigner', 

166 ICMS='Commissioned', 

167 ICMT='Comment', 

168 ICNM='Cinematographer', 

169 ICNT='Country', 

170 ICOP='Copyright', 

171 ICRD='DateCreated', 

172 ICRP='Cropped', 

173 IDIM='Dimensions', 

174 IDIT='DateTimeOriginal', 

175 IDPI='DotsPerInch', 

176 IDST='DistributedBy', 

177 IEDT='EditedBy', 

178 IENC='EncodedBy', 

179 IENG='Engineer', 

180 IGNR='Genre', 

181 IKEY='Keywords', 

182 ILGT='Lightness', 

183 ILGU='LogoURL', 

184 ILIU='LogoIconURL', 

185 ILNG='Language', 

186 IMBI='MoreInfoBannerImage', 

187 IMBU='MoreInfoBannerURL', 

188 IMED='Medium', 

189 IMIT='MoreInfoText', 

190 IMIU='MoreInfoURL', 

191 IMUS='MusicBy', 

192 INAM='Title', 

193 IPDS='ProductionDesigner', 

194 IPLT='NumColors', 

195 IPRD='Product', 

196 IPRO='ProducedBy', 

197 IRIP='RippedBy', 

198 IRTD='Rating', 

199 ISBJ='Subject', 

200 ISFT='Software', 

201 ISGN='SecondaryGenre', 

202 ISHP='Sharpness', 

203 ISMP='TimeCode', 

204 ISRC='Source', 

205 ISRF='SourceFrom', 

206 ISTD='ProductionStudio', 

207 ISTR='Starring', 

208 ITCH='Technician', 

209 ITRK='TrackNumber', 

210 IWMU='WatermarkURL', 

211 IWRI='WrittenBy', 

212 LANG='Language', 

213 LOCA='Location', 

214 PRT1='Part', 

215 PRT2='NumberOfParts', 

216 RATE='Rate', 

217 START='Starring', 

218 STAT='Statistics', 

219 TAPE='TapeName', 

220 TCDO='EndTimecode', 

221 TCOD='StartTimecode', 

222 TITL='Title', 

223 TLEN='Length', 

224 TORG='Organization', 

225 TRCK='TrackNumber', 

226 TURL='URL', 

227 TVER='Version', 

228 VMAJ='VegasVersionMajor', 

229 VMIN='VegasVersionMinor', 

230 YEAR='Year', 

231 # extensions from 

232 # [TeeRec](https://github.com/janscience/TeeRec/): 

233 BITS='Bits', 

234 PINS='Pins', 

235 AVRG='Averaging', 

236 CNVS='ConversionSpeed', 

237 SMPS='SamplingSpeed', 

238 VREF='ReferenceVoltage', 

239 GAIN='Gain', 

240 UWRP='UnwrapThreshold', 

241 UWPC='UnwrapClippedAmplitude', 

242 IBRD='uCBoard', 

243 IMAC='MACAdress', 

244 CPUF='CPU frequency') 

245"""Dictionary with known tags of the INFO chunk as keys and their description as value. 

246 

247See https://exiftool.org/TagNames/RIFF.html#Info%20for%20valid%20info%20tags 

248""" 

249 

250bext_tags = dict( 

251 Description=256, 

252 Originator=32, 

253 OriginatorReference=32, 

254 OriginationDate=10, 

255 OriginationTime=8, 

256 TimeReference=8, 

257 Version=2, 

258 UMID=64, 

259 LoudnessValue=2, 

260 LoudnessRange=2, 

261 MaxTruePeakLevel=2, 

262 MaxMomentaryLoudness=2, 

263 MaxShortTermLoudness=2, 

264 Reserved=180, 

265 CodingHistory=0) 

266"""Dictionary with tags of the BEXT chunk as keys and their size in bytes as values. 

267 

268See https://tech.ebu.ch/docs/tech/tech3285.pdf 

269""" 

270 

271ixml_tags = [ 

272 'BWFXML', 

273 'IXML_VERSION', 

274 'PROJECT', 

275 'SCENE', 

276 'TAPE', 

277 'TAKE', 

278 'TAKE_TYPE', 

279 'NO_GOOD', 

280 'FALSE_START', 

281 'WILD_TRACK', 

282 'CIRCLED', 

283 'FILE_UID', 

284 'UBITS', 

285 'NOTE', 

286 'SYNC_POINT_LIST', 

287 'SYNC_POINT_COUNT', 

288 'SYNC_POINT', 

289 'SYNC_POINT_TYPE', 

290 'SYNC_POINT_FUNCTION', 

291 'SYNC_POINT_COMMENT', 

292 'SYNC_POINT_LOW', 

293 'SYNC_POINT_HIGH', 

294 'SYNC_POINT_EVENT_DURATION', 

295 'SPEED', 

296 'MASTER_SPEED', 

297 'CURRENT_SPEED', 

298 'TIMECODE_RATE', 

299 'TIMECODE_FLAGS', 

300 'FILE_SAMPLE_RATE', 

301 'AUDIO_BIT_DEPTH', 

302 'DIGITIZER_SAMPLE_RATE', 

303 'TIMESTAMP_SAMPLES_SINCE_MIDNIGHT_HI', 

304 'TIMESTAMP_SAMPLES_SINCE_MIDNIGHT_LO', 

305 'TIMESTAMP_SAMPLE_RATE', 

306 'LOUDNESS', 

307 'LOUDNESS_VALUE', 

308 'LOUDNESS_RANGE', 

309 'MAX_TRUE_PEAK_LEVEL', 

310 'MAX_MOMENTARY_LOUDNESS', 

311 'MAX_SHORT_TERM_LOUDNESS', 

312 'HISTORY', 

313 'ORIGINAL_FILENAME', 

314 'PARENT_FILENAME', 

315 'PARENT_UID', 

316 'FILE_SET', 

317 'TOTAL_FILES', 

318 'FAMILY_UID', 

319 'FAMILY_NAME', 

320 'FILE_SET_INDEX', 

321 'TRACK_LIST', 

322 'TRACK_COUNT', 

323 'TRACK', 

324 'CHANNEL_INDEX', 

325 'INTERLEAVE_INDEX', 

326 'NAME', 

327 'FUNCTION', 

328 'PRE_RECORD_SAMPLECOUNT', 

329 'BEXT', 

330 'BWF_DESCRIPTION', 

331 'BWF_ORIGINATOR', 

332 'BWF_ORIGINATOR_REFERENCE', 

333 'BWF_ORIGINATION_DATE', 

334 'BWF_ORIGINATION_TIME', 

335 'BWF_TIME_REFERENCE_LOW', 

336 'BWF_TIME_REFERENCE_HIGH', 

337 'BWF_VERSION', 

338 'BWF_UMID', 

339 'BWF_RESERVED', 

340 'BWF_CODING_HISTORY', 

341 'BWF_LOUDNESS_VALUE', 

342 'BWF_LOUDNESS_RANGE', 

343 'BWF_MAX_TRUE_PEAK_LEVEL', 

344 'BWF_MAX_MOMENTARY_LOUDNESS', 

345 'BWF_MAX_SHORT_TERM_LOUDNESS', 

346 'USER', 

347 'FULL_TITLE', 

348 'DIRECTOR_NAME', 

349 'PRODUCTION_NAME', 

350 'PRODUCTION_ADDRESS', 

351 'PRODUCTION_EMAIL', 

352 'PRODUCTION_PHONE', 

353 'PRODUCTION_NOTE', 

354 'SOUND_MIXER_NAME', 

355 'SOUND_MIXER_ADDRESS', 

356 'SOUND_MIXER_EMAIL', 

357 'SOUND_MIXER_PHONE', 

358 'SOUND_MIXER_NOTE', 

359 'AUDIO_RECORDER_MODEL', 

360 'AUDIO_RECORDER_SERIAL_NUMBER', 

361 'AUDIO_RECORDER_FIRMWARE', 

362 'LOCATION', 

363 'LOCATION_NAME', 

364 'LOCATION_GPS', 

365 'LOCATION_ALTITUDE', 

366 'LOCATION_TYPE', 

367 'LOCATION_TIME', 

368 ] 

369"""List with valid tags of the iXML chunk. 

370 

371See http://www.gallery.co.uk/ixml/ 

372""" 

373 

374 

375# Read RIFF/WAVE files: 

376 

377def read_riff_header(sf, tag=None): 

378 """Read and check the RIFF file header. 

379 

380 Parameters 

381 ---------- 

382 sf: stream 

383 File stream of RIFF/WAVE file. 

384 tag: None or str 

385 If supplied, check whether it matches the subchunk tag. 

386 If it does not match, raise a ValueError. 

387 

388 Returns 

389 ------- 

390 filesize: int 

391 Size of the RIFF file in bytes. 

392 

393 Raises 

394 ------ 

395 ValueError 

396 Not a RIFF file or subchunk tag does not match `tag`. 

397 """ 

398 riffs = sf.read(4).decode('latin-1') 

399 if riffs != 'RIFF': 

400 raise ValueError('Not a RIFF file.') 

401 fsize = struct.unpack('<I', sf.read(4))[0] + 8 

402 subtag = sf.read(4).decode('latin-1') 

403 if tag is not None and subtag != tag: 

404 raise ValueError(f'Not a {tag} file.') 

405 return fsize 

406 

407 

408def skip_chunk(sf): 

409 """Skip over unknown RIFF chunk. 

410  

411 Parameters 

412 ---------- 

413 sf: stream 

414 File stream of RIFF file. 

415 

416 Returns 

417 ------- 

418 size: int 

419 The size of the skipped chunk in bytes. 

420 """ 

421 size = struct.unpack('<I', sf.read(4))[0] 

422 size += size % 2 

423 sf.seek(size, os.SEEK_CUR) 

424 return size 

425 

426 

427def read_chunk_tags(filepath): 

428 """Read tags of all chunks contained in a RIFF file. 

429 

430 Parameters 

431 ---------- 

432 filepath: string or file handle 

433 The RIFF file. 

434 

435 Returns 

436 ------- 

437 tags: dict 

438 Keys are the tag names of the chunks found in the file. If the 

439 chunk is a list chunk, then the list type is added with a dash 

440 to the key, i.e. "LIST-INFO". Values are tuples with the 

441 corresponding file positions of the data of the chunk (after 

442 the tag and the chunk size field) and the size of the chunk 

443 data. The file position of the next chunk is thus the position 

444 of the chunk plus the size of its data. 

445 

446 Raises 

447 ------ 

448 ValueError 

449 Not a RIFF file. 

450 

451 """ 

452 tags = {} 

453 sf = filepath 

454 file_pos = None 

455 if hasattr(filepath, 'read'): 

456 file_pos = sf.tell() 

457 sf.seek(0, os.SEEK_SET) 

458 else: 

459 sf = open(filepath, 'rb') 

460 fsize = read_riff_header(sf) 

461 while (sf.tell() < fsize - 8): 

462 chunk = sf.read(4).decode('latin-1').upper() 

463 size = struct.unpack('<I', sf.read(4))[0] 

464 size += size % 2 

465 fp = sf.tell() 

466 if chunk == 'LIST': 

467 subchunk = sf.read(4).decode('latin-1').upper() 

468 tags[chunk + '-' + subchunk] = (fp, size) 

469 size -= 4 

470 else: 

471 tags[chunk] = (fp, size) 

472 sf.seek(size, os.SEEK_CUR) 

473 if file_pos is None: 

474 sf.close() 

475 else: 

476 sf.seek(file_pos, os.SEEK_SET) 

477 return tags 

478 

479 

480def read_format_chunk(sf): 

481 """Read format chunk. 

482 

483 Parameters 

484 ---------- 

485 sf: stream 

486 File stream for reading FMT chunk. 

487 

488 Returns 

489 ------- 

490 channels: int 

491 Number of channels. 

492 rate: float 

493 Sampling rate (frames per time) in Hertz. 

494 bits: int 

495 Bit resolution. 

496 """ 

497 size = struct.unpack('<I', sf.read(4))[0] 

498 size += size % 2 

499 ccode, channels, rate, byterate, blockalign, bits = struct.unpack('<HHIIHH', sf.read(16)) 

500 if size > 16: 

501 sf.read(size - 16) 

502 return channels, float(rate), bits 

503 

504 

505def read_info_chunks(sf, store_empty): 

506 """Read in meta data from info list chunk. 

507 

508 The variable `info_tags` is used to map the 4 character tags to 

509 human readable key names. 

510 

511 See https://exiftool.org/TagNames/RIFF.html#Info%20for%20valid%20info%20tags 

512  

513 Parameters 

514 ---------- 

515 sf: stream 

516 File stream of RIFF file. 

517 store_empty: bool 

518 If `False` do not add meta data with empty values. 

519 

520 Returns 

521 ------- 

522 metadata: dict 

523 Dictionary with key-value pairs of info tags. 

524 

525 """ 

526 md = {} 

527 list_size = struct.unpack('<I', sf.read(4))[0] 

528 list_type = sf.read(4).decode('latin-1').upper() 

529 list_size -= 4 

530 if list_type == 'INFO': 

531 while list_size >= 8: 

532 key = sf.read(4).decode('ascii').rstrip(' \x00') 

533 size = struct.unpack('<I', sf.read(4))[0] 

534 size += size % 2 

535 bs = sf.read(size) 

536 x = np.frombuffer(bs, dtype=np.uint8) 

537 if np.sum((x >= 0x80) & (x <= 0x9f)) > 0: 

538 s = bs.decode('windows-1252') 

539 else: 

540 s = bs.decode('latin1') 

541 value = s.rstrip(' \x00\x02') 

542 list_size -= 8 + size 

543 if key in info_tags: 

544 key = info_tags[key] 

545 if value or store_empty: 

546 md[key] = value 

547 if list_size > 0: # finish or skip 

548 sf.seek(list_size, os.SEEK_CUR) 

549 return md 

550 

551 

552def read_bext_chunk(sf, store_empty=True): 

553 """Read in metadata from the broadcast-audio extension chunk. 

554 

555 The variable `bext_tags` lists all valid BEXT fields and their size. 

556 

557 See https://tech.ebu.ch/docs/tech/tech3285.pdf for specifications. 

558  

559 Parameters 

560 ---------- 

561 sf: stream 

562 File stream of RIFF file. 

563 store_empty: bool 

564 If `False` do not add meta data with empty values. 

565 

566 Returns 

567 ------- 

568 meta_data: dict 

569 The meta-data of a BEXT chunk are stored in a flat dictionary 

570 with the following keys: 

571 

572 - 'Description': a free description of the sequence. 

573 - 'Originator': name of the originator/ producer of the audio file. 

574 - 'OriginatorReference': unambiguous reference allocated by the originating organisation. 

575 - 'OriginationDate': date of creation of audio sequence in yyyy:mm:dd. 

576 - 'OriginationTime': time of creation of audio sequence in hh:mm:ss. 

577 - 'TimeReference': first sample since midnight. 

578 - 'Version': version of the BWF. 

579 - 'UMID': unique material identifier. 

580 - 'LoudnessValue': integrated loudness value. 

581 - 'LoudnessRange': loudness range. 

582 - 'MaxTruePeakLevel': maximum true peak value in dBTP. 

583 - 'MaxMomentaryLoudness': highest value of the momentary loudness level. 

584 - 'MaxShortTermLoudness': highest value of the short-term loudness level. 

585 - 'Reserved': 180 bytes reserved for extension. 

586 - 'CodingHistory': description of coding processed applied to the audio data, with comma separated subfields: "A=" coding algorithm, e.g. PCM, "F=" sampling rate in Hertz, "B=" bit-rate for MPEG files, "W=" word length in bits, "M=" mono, stereo, dual-mono, joint-stereo, "T=" free text.  

587 """ 

588 md = {} 

589 size = struct.unpack('<I', sf.read(4))[0] 

590 size += size % 2 

591 s = sf.read(256).decode('ascii').strip(' \x00') 

592 if s or store_empty: 

593 md['Description'] = s 

594 s = sf.read(32).decode('ascii').strip(' \x00') 

595 if s or store_empty: 

596 md['Originator'] = s 

597 s = sf.read(32).decode('ascii').strip(' \x00') 

598 if s or store_empty: 

599 md['OriginatorReference'] = s 

600 s = sf.read(10).decode('ascii').strip(' \x00') 

601 if s or store_empty: 

602 md['OriginationDate'] = s 

603 s = sf.read(8).decode('ascii').strip(' \x00') 

604 if s or store_empty: 

605 md['OriginationTime'] = s 

606 reference, version = struct.unpack('<QH', sf.read(10)) 

607 if reference > 0 or store_empty: 

608 md['TimeReference'] = reference 

609 if version > 0 or store_empty: 

610 md['Version'] = version 

611 s = sf.read(64).decode('ascii').strip(' \x00') 

612 if s or store_empty: 

613 md['UMID'] = s 

614 lvalue, lrange, peak, momentary, shortterm = struct.unpack('<hhhhh', sf.read(10)) 

615 if lvalue > 0 or store_empty: 

616 md['LoudnessValue'] = lvalue 

617 if lrange > 0 or store_empty: 

618 md['LoudnessRange'] = lrange 

619 if peak > 0 or store_empty: 

620 md['MaxTruePeakLevel'] = peak 

621 if momentary > 0 or store_empty: 

622 md['MaxMomentaryLoudness'] = momentary 

623 if shortterm > 0 or store_empty: 

624 md['MaxShortTermLoudness'] = shortterm 

625 s = sf.read(180).decode('ascii').strip(' \x00') 

626 if s or store_empty: 

627 md['Reserved'] = s 

628 size -= 256 + 32 + 32 + 10 + 8 + 8 + 2 + 64 + 10 + 180 

629 s = sf.read(size).decode('ascii').strip(' \x00\n\r') 

630 if s or store_empty: 

631 md['CodingHistory'] = s 

632 return md 

633 

634 

635def read_ixml_chunk(sf, store_empty=True): 

636 """Read in metadata from an IXML chunk. 

637 

638 See the variable `ixml_tags` for a list of valid tags. 

639 

640 See http://www.gallery.co.uk/ixml/ for the specification of iXML. 

641  

642 Parameters 

643 ---------- 

644 sf: stream 

645 File stream of RIFF file. 

646 store_empty: bool 

647 If `False` do not add meta data with empty values. 

648 

649 Returns 

650 ------- 

651 metadata: nested dict 

652 Dictionary with key-value pairs. 

653 """ 

654 

655 def parse_ixml(element, store_empty=True): 

656 md = {} 

657 for e in element: 

658 if not e.text is None: 

659 md[e.tag] = e.text 

660 elif len(e) > 0: 

661 md[e.tag] = parse_ixml(e, store_empty) 

662 elif store_empty: 

663 md[e.tag] = '' 

664 return md 

665 

666 size = struct.unpack('<I', sf.read(4))[0] 

667 size += size % 2 

668 xmls = sf.read(size).decode('latin-1').rstrip(' \x00') 

669 root = ET.fromstring(xmls) 

670 md = {root.tag: parse_ixml(root, store_empty)} 

671 if len(md) == 1 and 'BWFXML' in md: 

672 md = md['BWFXML'] 

673 return md 

674 

675 

676def read_guano_chunk(sf): 

677 """Read in metadata from a GUANO chunk. 

678 

679 GUANO is the Grand Unified Acoustic Notation Ontology, an 

680 extensible, open format for embedding metadata within bat acoustic 

681 recordings. See https://github.com/riggsd/guano-spec for details. 

682 

683 The GUANO specification allows for the inclusion of arbitrary 

684 nested keys and string encoded values. In that respect it is a 

685 well defined and easy to handle serialization of the [odML data 

686 model](https://doi.org/10.3389/fninf.2011.00016). 

687  

688 Parameters 

689 ---------- 

690 sf: stream 

691 File stream of RIFF file. 

692 

693 Returns 

694 ------- 

695 metadata: nested dict 

696 Dictionary with key-value pairs. 

697 

698 """ 

699 md = {} 

700 size = struct.unpack('<I', sf.read(4))[0] 

701 size += size % 2 

702 for line in io.StringIO(sf.read(size).decode('utf-8')): 

703 ss = line.split(':') 

704 if len(ss) > 1: 

705 md[ss[0].strip()] = ':'.join(ss[1:]).strip().replace(r'\n', '\n') 

706 return unflatten_metadata(md, '|') 

707 

708 

709def read_cue_chunk(sf): 

710 """Read in marker positions from cue chunk. 

711  

712 See https://www.recordingblogs.com/wiki/cue-chunk-of-a-wave-file 

713 

714 Parameters 

715 ---------- 

716 sf: stream 

717 File stream of RIFF file. 

718 

719 Returns 

720 ------- 

721 locs: 2-D array of ints 

722 Each row is a marker with unique identifier in the first column, 

723 position in the second column, and span in the third column. 

724 The cue chunk does not encode spans, so the third column is 

725 initialized with zeros. 

726 """ 

727 locs = [] 

728 size, n = struct.unpack('<II', sf.read(8)) 

729 for c in range(n): 

730 cpid, cppos = struct.unpack('<II', sf.read(8)) 

731 datachunkid = sf.read(4).decode('latin-1').rstrip(' \x00').upper() 

732 chunkstart, blockstart, offset = struct.unpack('<III', sf.read(12)) 

733 if datachunkid == 'DATA': 

734 locs.append((cpid, cppos, 0)) 

735 return np.array(locs, dtype=int) 

736 

737 

738def read_playlist_chunk(sf, locs): 

739 """Read in marker spans from playlist chunk. 

740  

741 See https://www.recordingblogs.com/wiki/playlist-chunk-of-a-wave-file 

742 

743 Parameters 

744 ---------- 

745 sf: stream 

746 File stream of RIFF file. 

747 locs: 2-D array of ints 

748 Markers as returned by the `read_cue_chunk()` function. 

749 Each row is a marker with unique identifier in the first column, 

750 position in the second column, and span in the third column. 

751 The span is read in from the playlist chunk. 

752 """ 

753 if len(locs) == 0: 

754 warnings.warn('read_playlist_chunks() requires markers from a previous cue chunk') 

755 size, n = struct.unpack('<II', sf.read(8)) 

756 for p in range(n): 

757 cpid, length, repeats = struct.unpack('<III', sf.read(12)) 

758 i = np.where(locs[:,0] == cpid)[0] 

759 if len(i) > 0: 

760 locs[i[0], 2] = length 

761 

762 

763def read_adtl_chunks(sf, locs, labels): 

764 """Read in associated data list chunks. 

765 

766 See https://www.recordingblogs.com/wiki/associated-data-list-chunk-of-a-wave-file 

767  

768 Parameters 

769 ---------- 

770 sf: stream 

771 File stream of RIFF file. 

772 locs: 2-D array of ints 

773 Markers as returned by the `read_cue_chunk()` function. 

774 Each row is a marker with unique identifier in the first column, 

775 position in the second column, and span in the third column. 

776 The span is read in from the LTXT chunk. 

777 labels: 2-D array of string objects 

778 Labels (first column) and texts (second column) for each marker (rows) 

779 from previous LABL, NOTE, and LTXT chunks. 

780 

781 Returns 

782 ------- 

783 labels: 2-D array of string objects 

784 Labels (first column) and texts (second column) for each marker (rows) 

785 from LABL, NOTE (first column), and LTXT chunks (last column). 

786 """ 

787 list_size = struct.unpack('<I', sf.read(4))[0] 

788 list_type = sf.read(4).decode('latin-1').upper() 

789 list_size -= 4 

790 if list_type == 'ADTL': 

791 if len(locs) == 0: 

792 warnings.warn('read_adtl_chunks() requires markers from a previous cue chunk') 

793 if len(labels) == 0: 

794 labels = np.zeros((len(locs), 2), dtype=object) 

795 while list_size >= 8: 

796 key = sf.read(4).decode('latin-1').rstrip(' \x00').upper() 

797 size, cpid = struct.unpack('<II', sf.read(8)) 

798 size += size % 2 - 4 

799 if key == 'LABL' or key == 'NOTE': 

800 label = sf.read(size).decode('latin-1').rstrip(' \x00') 

801 i = np.where(locs[:,0] == cpid)[0] 

802 if len(i) > 0: 

803 i = i[0] 

804 if hasattr(labels[i,0], '__len__') and len(labels[i,0]) > 0: 

805 labels[i,0] += '|' + label 

806 else: 

807 labels[i,0] = label 

808 elif key == 'LTXT': 

809 length = struct.unpack('<I', sf.read(4))[0] 

810 sf.read(12) # skip fields 

811 text = sf.read(size - 4 - 12).decode('latin-1').rstrip(' \x00') 

812 i = np.where(locs[:,0] == cpid)[0] 

813 if len(i) > 0: 

814 i = i[0] 

815 if hasattr(labels[i,1], '__len__') and len(labels[i,1]) > 0: 

816 labels[i,1] += '|' + text 

817 else: 

818 labels[i,1] = text 

819 locs[i,2] = length 

820 else: 

821 sf.read(size) 

822 list_size -= 12 + size 

823 if list_size > 0: # finish or skip 

824 sf.seek(list_size, os.SEEK_CUR) 

825 return labels 

826 

827 

828def read_lbl_chunk(sf, rate): 

829 """Read in marker positions, spans, labels, and texts from lbl chunk. 

830  

831 The proprietary LBL chunk is specific to wave files generated by 

832 [AviSoft](www.avisoft.com) products. 

833 

834 The labels (first column of `labels`) have special meanings. 

835 Markers with a span (a section label in the terminology of 

836 AviSoft) can be arranged in three levels when displayed: 

837 

838 - "M": layer 1, the top level section 

839 - "N": layer 2, sections below layer 1 

840 - "O": layer 3, sections below layer 2 

841 - "P": total, section start and end are displayed with two vertical lines. 

842 

843 All other labels mark single point labels with a time and a 

844 frequency (that we here discard). See also 

845 https://www.avisoft.com/Help/SASLab/menu_main_tools_labels.htm 

846  

847 Parameters 

848 ---------- 

849 sf: stream 

850 File stream of RIFF file. 

851 rate: float 

852 Sampling rate of the data in Hertz. 

853 

854 Returns 

855 ------- 

856 locs: 2-D array of ints 

857 Each row is a marker with unique identifier (simply integers 

858 enumerating the markers) in the first column, position in the 

859 second column, and span in the third column. 

860 labels: 2-D array of string objects 

861 Labels (first column) and texts (second column) for 

862 each marker (rows). 

863 

864 """ 

865 size = struct.unpack('<I', sf.read(4))[0] 

866 nn = size // 65 

867 locs = np.zeros((nn, 3), dtype=int) 

868 labels = np.zeros((nn, 2), dtype=object) 

869 n = 0 

870 for c in range(nn): 

871 line = sf.read(65).decode('ascii') 

872 fields = line.split('\t') 

873 if len(fields) >= 4: 

874 labels[n,0] = fields[3].strip() 

875 labels[n,1] = fields[2].strip() 

876 start_idx = int(np.round(float(fields[0].strip('\x00'))*rate)) 

877 end_idx = int(np.round(float(fields[1].strip('\x00'))*rate)) 

878 locs[n,0] = n 

879 locs[n,1] = start_idx 

880 if labels[n,0] in 'MNOP': 

881 locs[n,2] = end_idx - start_idx 

882 else: 

883 locs[n,2] = 0 

884 n += 1 

885 else: 

886 # the first 65 bytes are a title string that applies to 

887 # the whole wave file that can be set from the AVISoft 

888 # software. The recorder leave this empty. 

889 pass 

890 return locs[:n,:], labels[:n,:] 

891 

892 

893def metadata_riff(filepath, store_empty=False): 

894 """Read metadata from a RIFF/WAVE file. 

895 

896 Parameters 

897 ---------- 

898 filepath: string or file handle 

899 The RIFF file. 

900 store_empty: bool 

901 If `False` do not add meta data with empty values. 

902 

903 Returns 

904 ------- 

905 meta_data: nested dict 

906 Meta data contained in the RIFF file. Keys of the nested 

907 dictionaries are always strings. If the corresponding 

908 values are dictionaries, then the key is the section name 

909 of the metadata contained in the dictionary. All other 

910 types of values are values for the respective key. In 

911 particular they are strings, or list of strings. But other 

912 simple types like ints or floats are also allowed. 

913 First level contains sections of meta data 

914 (e.g. keys 'INFO', 'BEXT', 'IXML', values are dictionaries). 

915 

916 Raises 

917 ------ 

918 ValueError 

919 Not a RIFF file. 

920 

921 Examples 

922 -------- 

923 ``` 

924 from audioio.riffmetadata import riff_metadata 

925 from audioio import print_metadata 

926 

927 md = riff_metadata('audio/file.wav') 

928 print_metadata(md) 

929 ``` 

930 """ 

931 meta_data = {} 

932 sf = filepath 

933 file_pos = None 

934 if hasattr(filepath, 'read'): 

935 file_pos = sf.tell() 

936 sf.seek(0, os.SEEK_SET) 

937 else: 

938 sf = open(filepath, 'rb') 

939 fsize = read_riff_header(sf) 

940 while (sf.tell() < fsize - 8): 

941 chunk = sf.read(4).decode('latin-1').upper() 

942 if chunk == 'LIST': 

943 md = read_info_chunks(sf, store_empty) 

944 if len(md) > 0: 

945 meta_data['INFO'] = md 

946 elif chunk == 'BEXT': 

947 md = read_bext_chunk(sf, store_empty) 

948 if len(md) > 0: 

949 meta_data['BEXT'] = md 

950 elif chunk == 'IXML': 

951 md = read_ixml_chunk(sf, store_empty) 

952 if len(md) > 0: 

953 meta_data['IXML'] = md 

954 elif chunk == 'GUAN': 

955 md = read_guano_chunk(sf) 

956 if len(md) > 0: 

957 meta_data.update(md) 

958 else: 

959 skip_chunk(sf) 

960 if file_pos is None: 

961 sf.close() 

962 else: 

963 sf.seek(file_pos, os.SEEK_SET) 

964 return meta_data 

965 

966 

967def markers_riff(filepath): 

968 """Read markers from a RIFF/WAVE file. 

969 

970 Parameters 

971 ---------- 

972 filepath: string or file handle 

973 The RIFF file. 

974 

975 Returns 

976 ------- 

977 locs: 2-D array of ints 

978 Marker positions (first column) and spans (second column) 

979 for each marker (rows). 

980 labels: 2-D array of string objects 

981 Labels (first column) and texts (second column) 

982 for each marker (rows). 

983 

984 Raises 

985 ------ 

986 ValueError 

987 Not a RIFF file. 

988 

989 Examples 

990 -------- 

991 ``` 

992 from audioio.riffmetadata import riff_markers 

993 from audioio import print_markers 

994 

995 locs, labels = riff_markers('audio/file.wav') 

996 print_markers(locs, labels) 

997 ``` 

998 """ 

999 sf = filepath 

1000 file_pos = None 

1001 if hasattr(filepath, 'read'): 

1002 file_pos = sf.tell() 

1003 sf.seek(0, os.SEEK_SET) 

1004 else: 

1005 sf = open(filepath, 'rb') 

1006 rate = None 

1007 locs = np.zeros((0, 3), dtype=int) 

1008 labels = np.zeros((0, 2), dtype=object) 

1009 fsize = read_riff_header(sf) 

1010 while (sf.tell() < fsize - 8): 

1011 chunk = sf.read(4).decode('latin-1').upper() 

1012 if chunk == 'FMT ': 

1013 rate = read_format_chunk(sf)[1] 

1014 elif chunk == 'CUE ': 

1015 locs = read_cue_chunk(sf) 

1016 elif chunk == 'PLST': 

1017 read_playlist_chunk(sf, locs) 

1018 elif chunk == 'LIST': 

1019 labels = read_adtl_chunks(sf, locs, labels) 

1020 elif chunk == 'LBL ': 

1021 locs, labels = read_lbl_chunk(sf, rate) 

1022 else: 

1023 skip_chunk(sf) 

1024 if file_pos is None: 

1025 sf.close() 

1026 else: 

1027 sf.seek(file_pos, os.SEEK_SET) 

1028 # sort markers according to their position: 

1029 if len(locs) > 0: 

1030 idxs = np.argsort(locs[:,-2]) 

1031 locs = locs[idxs,:] 

1032 if len(labels) > 0: 

1033 labels = labels[idxs,:] 

1034 return locs[:,1:], labels 

1035 

1036 

1037# Write RIFF/WAVE file: 

1038 

1039def write_riff_chunk(df, filesize=0, tag='WAVE'): 

1040 """Write RIFF file header. 

1041 

1042 Parameters 

1043 ---------- 

1044 df: stream 

1045 File stream for writing RIFF file header. 

1046 filesize: int 

1047 Size of the file in bytes. 

1048 tag: str 

1049 The type of RIFF file. Default is a wave file. 

1050 Exactly 4 characeters long. 

1051 

1052 Returns 

1053 ------- 

1054 n: int 

1055 Number of bytes written to the stream. 

1056 

1057 Raises 

1058 ------ 

1059 ValueError 

1060 `tag` is not 4 characters long. 

1061 """ 

1062 if len(tag) != 4: 

1063 raise ValueError(f'file tag "{tag}" must be exactly 4 characters long') 

1064 if filesize < 8: 

1065 filesize = 8 

1066 df.write(b'RIFF') 

1067 df.write(struct.pack('<I', filesize - 8)) 

1068 df.write(tag.encode('ascii', errors='strict')) 

1069 return 12 

1070 

1071 

1072def write_filesize(df, filesize=None): 

1073 """Write the file size into the RIFF file header. 

1074 

1075 Parameters 

1076 ---------- 

1077 df: stream 

1078 File stream into which to write `filesize`. 

1079 filesize: int 

1080 Size of the file in bytes. If not specified or 0, 

1081 then use current size of the file. 

1082 """ 

1083 pos = df.tell() 

1084 if not filesize: 

1085 df.seek(0, os.SEEK_END) 

1086 filesize = df.tell() 

1087 df.seek(4, os.SEEK_SET) 

1088 df.write(struct.pack('<I', filesize - 8)) 

1089 df.seek(pos, os.SEEK_SET) 

1090 

1091 

1092def write_chunk_name(df, pos, tag): 

1093 """Change the name of a chunk. 

1094 

1095 Use this to make the content of an existing chunk to be ignored by 

1096 overwriting its name with an unknown one. 

1097 

1098 Parameters 

1099 ---------- 

1100 df: stream 

1101 File stream. 

1102 pos: int 

1103 Position of the chunk in the file stream. 

1104 tag: str 

1105 The type of RIFF file. Default is a wave file. 

1106 Exactly 4 characeters long. 

1107 

1108 Raises 

1109 ------ 

1110 ValueError 

1111 `tag` is not 4 characters long. 

1112 """ 

1113 if len(tag) != 4: 

1114 raise ValueError(f'file tag "{tag}" must be exactly 4 characters long') 

1115 df.seek(pos, os.SEEK_SET) 

1116 df.write(tag.encode('ascii', errors='strict')) 

1117 

1118 

1119def write_format_chunk(df, channels, frames, rate, bits=16): 

1120 """Write format chunk. 

1121 

1122 Parameters 

1123 ---------- 

1124 df: stream 

1125 File stream for writing FMT chunk. 

1126 channels: int 

1127 Number of channels contained in the data. 

1128 frames: int 

1129 Number of frames contained in the data. 

1130 rate: int or float 

1131 Sampling rate (frames per time) in Hertz. 

1132 bits: 16 or 32 

1133 Bit resolution of the data to be written. 

1134 

1135 Returns 

1136 ------- 

1137 n: int 

1138 Number of bytes written to the stream. 

1139 """ 

1140 blockalign = channels * (bits//8) 

1141 byterate = int(rate) * blockalign 

1142 df.write(b'fmt ') 

1143 df.write(struct.pack('<IHHIIHH', 16, 1, channels, int(rate), 

1144 byterate, blockalign, bits)) 

1145 return 8 + 16 

1146 

1147 

1148def write_data_chunk(df, data, bits=16): 

1149 """Write data chunk. 

1150 

1151 Parameters 

1152 ---------- 

1153 df: stream 

1154 File stream for writing data chunk. 

1155 data: 1-D or 2-D array of floats 

1156 Data with first column time (frames) and optional second column 

1157 channels with values between -1 and 1. 

1158 bits: 16 or 32 

1159 Bit resolution of the data to be written. 

1160 

1161 Returns 

1162 ------- 

1163 n: int 

1164 Number of bytes written to the stream. 

1165 """ 

1166 df.write(b'data') 

1167 df.write(struct.pack('<I', data.size * (bits//8))) 

1168 buffer = data * 2**(bits-1) 

1169 n = df.write(buffer.astype(f'<i{bits//8}').tobytes('C')) 

1170 return 8 + n 

1171 

1172 

1173def write_info_chunk(df, metadata): 

1174 """Write metadata to LIST INFO chunk. 

1175 

1176 If `metadata` contains an 'INFO' key, then write the flat 

1177 dictionary of this key as an INFO chunk. Otherwise, attempt to 

1178 write all metadata items as an INFO chunk. The keys are translated 

1179 via the `info_tags` variable back to INFO tags. If after 

1180 translation any key is left that is longer than 4 characters or 

1181 any key has a dictionary as a value (non-flat metadata), the INFO 

1182 chunk is not written. 

1183 

1184 See https://exiftool.org/TagNames/RIFF.html#Info%20for%20valid%20info%20tags 

1185 

1186 Parameters 

1187 ---------- 

1188 df: stream 

1189 File stream for writing INFO chunk. 

1190 metadata: nested dict 

1191 Metadata as key-value pairs. Values can be strings, integers, 

1192 or dictionaries. 

1193 

1194 Returns 

1195 ------- 

1196 n: int 

1197 Number of bytes written to the stream. 

1198 keys_written: list of str 

1199 Keys written to the INFO chunk. 

1200 

1201 """ 

1202 if not metadata: 

1203 return 0, [] 

1204 is_info = False 

1205 if 'INFO' in metadata: 

1206 metadata = metadata['INFO'] 

1207 is_info = True 

1208 tags = {v: k for k, v in info_tags.items()} 

1209 n = 0 

1210 for k in metadata: 

1211 kn = tags.get(k, k) 

1212 if len(kn) > 4: 

1213 if is_info: 

1214 warnings.warn(f'no 4-character info tag for key "{k}" found.') 

1215 return 0, [] 

1216 if isinstance(metadata[k], dict): 

1217 if is_info: 

1218 warnings.warn(f'value of key "{k}" in INFO chunk cannot be a dictionary.') 

1219 return 0, [] 

1220 try: 

1221 v = str(metadata[k]).encode('latin-1') 

1222 except UnicodeEncodeError: 

1223 v = str(metadata[k]).encode('windows-1252') 

1224 n += 8 + len(v) + len(v) % 2 

1225 df.write(b'LIST') 

1226 df.write(struct.pack('<I', n + 4)) 

1227 df.write(b'INFO') 

1228 keys_written = [] 

1229 for k in metadata: 

1230 kn = tags.get(k, k) 

1231 df.write(f'{kn:<4s}'.encode('latin-1')) 

1232 try: 

1233 v = str(metadata[k]).encode('latin-1') 

1234 except UnicodeEncodeError: 

1235 v = str(metadata[k]).encode('windows-1252') 

1236 ns = len(v) + len(v) % 2 

1237 if ns > len(v): 

1238 v += b' '; 

1239 df.write(struct.pack('<I', ns)) 

1240 df.write(v) 

1241 keys_written.append(k) 

1242 return 12 + n, ['INFO'] if is_info else keys_written 

1243 

1244 

1245def write_bext_chunk(df, metadata): 

1246 """Write metadata to BEXT chunk. 

1247 

1248 If `metadata` contains a BEXT key, and this contains valid BEXT 

1249 tags (one of the keys listed in the variable `bext_tags`), then 

1250 write the dictionary of that key as a broadcast-audio extension 

1251 chunk. 

1252 

1253 See https://tech.ebu.ch/docs/tech/tech3285.pdf for specifications. 

1254 

1255 Parameters 

1256 ---------- 

1257 df: stream 

1258 File stream for writing BEXT chunk. 

1259 metadata: nested dict 

1260 Metadata as key-value pairs. Values can be strings, integers, 

1261 or dictionaries. 

1262 

1263 Returns 

1264 ------- 

1265 n: int 

1266 Number of bytes written to the stream. 

1267 keys_written: list of str 

1268 Keys written to the BEXT chunk. 

1269 

1270 """ 

1271 if not metadata or not 'BEXT' in metadata: 

1272 return 0, [] 

1273 metadata = metadata['BEXT'] 

1274 for k in metadata: 

1275 if not k in bext_tags: 

1276 warnings.warn(f'no bext tag for key "{k}" found.') 

1277 return 0, [] 

1278 n = 0 

1279 for k in bext_tags: 

1280 n += bext_tags[k] 

1281 ch = metadata.get('CodingHistory', '').encode('ascii', errors='replace') 

1282 if len(ch) >= 2 and ch[-2:] != '\r\n': 

1283 ch += b'\r\n' 

1284 nch = len(ch) + len(ch) % 2 

1285 n += nch 

1286 df.write(b'BEXT') 

1287 df.write(struct.pack('<I', n)) 

1288 for k in bext_tags: 

1289 bn = bext_tags[k] 

1290 if bn == 2: 

1291 v = metadata.get(k, '0') 

1292 df.write(struct.pack('<H', int(v))) 

1293 elif bn == 8 and k == 'TimeReference': 

1294 v = metadata.get(k, '0') 

1295 df.write(struct.pack('<Q', int(v))) 

1296 elif bn == 0: 

1297 df.write(ch) 

1298 df.write(bytes(nch - len(ch))) 

1299 else: 

1300 v = metadata.get(k, '').encode('ascii', errors='replace') 

1301 df.write(v[:bn] + bytes(bn - len(v))) 

1302 return 8 + n, ['BEXT'] 

1303 

1304 

1305def write_ixml_chunk(df, metadata, keys_written=None): 

1306 """Write metadata to iXML chunk. 

1307 

1308 If `metadata` contains an IXML key with valid IXML tags (one of 

1309 those listed in the variable `ixml_tags`), or the remaining tags 

1310 in `metadata` are valid IXML tags, then write an IXML chunk. 

1311 

1312 See http://www.gallery.co.uk/ixml/ for the specification of iXML. 

1313 

1314 Parameters 

1315 ---------- 

1316 df: stream 

1317 File stream for writing IXML chunk. 

1318 metadata: nested dict 

1319 Meta-data as key-value pairs. Values can be strings, integers, 

1320 or dictionaries. 

1321 keys_written: list of str 

1322 Keys that have already written to INFO or BEXT chunk. 

1323 

1324 Returns 

1325 ------- 

1326 n: int 

1327 Number of bytes written to the stream. 

1328 keys_written: list of str 

1329 Keys written to the IXML chunk. 

1330 

1331 """ 

1332 def check_ixml(metadata): 

1333 for k in metadata: 

1334 if not k.upper() in ixml_tags: 

1335 return False 

1336 if isinstance(metadata[k], dict): 

1337 if not check_ixml(metadata[k]): 

1338 return False 

1339 return True 

1340 

1341 def build_xml(node, metadata): 

1342 kw = [] 

1343 for k in metadata: 

1344 e = ET.SubElement(node, k) 

1345 if isinstance(metadata[k], dict): 

1346 build_xml(e, metadata[k]) 

1347 else: 

1348 e.text = str(metadata[k]) 

1349 kw.append(k) 

1350 return kw 

1351 

1352 if not metadata: 

1353 return 0, [] 

1354 md = metadata 

1355 if keys_written: 

1356 md = {k: metadata[k] for k in metadata if not k in keys_written} 

1357 if len(md) == 0: 

1358 return 0, [] 

1359 has_ixml = False 

1360 if 'IXML' in md and check_ixml(md['IXML']): 

1361 md = md['IXML'] 

1362 has_ixml = True 

1363 else: 

1364 if not check_ixml(md): 

1365 return 0, [] 

1366 root = ET.Element('BWFXML') 

1367 kw = build_xml(root, md) 

1368 bs = bytes(ET.tostring(root, xml_declaration=True, 

1369 short_empty_elements=False)) 

1370 if len(bs) % 2 == 1: 

1371 bs += bytes(1) 

1372 df.write(b'IXML') 

1373 df.write(struct.pack('<I', len(bs))) 

1374 df.write(bs) 

1375 return 8 + len(bs), ['IXML'] if has_ixml else kw 

1376 

1377 

1378def write_guano_chunk(df, metadata, keys_written=None): 

1379 """Write metadata to guan chunk. 

1380 

1381 GUANO is the Grand Unified Acoustic Notation Ontology, an 

1382 extensible, open format for embedding metadata within bat acoustic 

1383 recordings. See https://github.com/riggsd/guano-spec for details. 

1384 

1385 The GUANO specification allows for the inclusion of arbitrary 

1386 nested keys and string encoded values. In that respect it is a 

1387 well defined and easy to handle serialization of the [odML data 

1388 model](https://doi.org/10.3389/fninf.2011.00016). 

1389 

1390 This will write *all* metadata that are not in `keys_written`. 

1391 

1392 Parameters 

1393 ---------- 

1394 df: stream 

1395 File stream for writing guano chunk. 

1396 metadata: nested dict 

1397 Metadata as key-value pairs. Values can be strings, integers, 

1398 or dictionaries. 

1399 keys_written: list of str 

1400 Keys that have already written to INFO, BEXT, IXML chunk. 

1401 

1402 Returns 

1403 ------- 

1404 n: int 

1405 Number of bytes written to the stream. 

1406 keys_written: list of str 

1407 Top-level keys written to the GUANO chunk. 

1408 

1409 """ 

1410 if not metadata: 

1411 return 0, [] 

1412 md = metadata 

1413 if keys_written: 

1414 md = {k: metadata[k] for k in metadata if not k in keys_written} 

1415 if len(md) == 0: 

1416 return 0, [] 

1417 fmd = flatten_metadata(md, True, '|') 

1418 for k in fmd: 

1419 if isinstance(fmd[k], str): 

1420 fmd[k] = fmd[k].replace('\n', r'\n') 

1421 sio = io.StringIO() 

1422 m, k = find_key(md, 'GUANO.Version') 

1423 if k is None: 

1424 sio.write('GUANO|Version:1.0\n') 

1425 for k in fmd: 

1426 sio.write(f'{k}:{fmd[k]}\n') 

1427 bs = sio.getvalue().encode('utf-8') 

1428 if len(bs) % 2 == 1: 

1429 bs += b' ' 

1430 n = len(bs) 

1431 df.write(b'guan') 

1432 df.write(struct.pack('<I', n)) 

1433 df.write(bs) 

1434 return n, list(md) 

1435 

1436 

1437def write_cue_chunk(df, locs): 

1438 """Write marker positions to cue chunk. 

1439 

1440 See https://www.recordingblogs.com/wiki/cue-chunk-of-a-wave-file 

1441 

1442 Parameters 

1443 ---------- 

1444 df: stream 

1445 File stream for writing cue chunk. 

1446 locs: None or 2-D array of ints 

1447 Positions (first column) and spans (optional second column) 

1448 for each marker (rows). 

1449 

1450 Returns 

1451 ------- 

1452 n: int 

1453 Number of bytes written to the stream. 

1454 """ 

1455 if locs is None or len(locs) == 0: 

1456 return 0 

1457 df.write(b'CUE ') 

1458 df.write(struct.pack('<II', 4 + len(locs)*24, len(locs))) 

1459 for i in range(len(locs)): 

1460 df.write(struct.pack('<II4sIII', i, locs[i,0], b'data', 0, 0, 0)) 

1461 return 12 + len(locs)*24 

1462 

1463 

1464def write_playlist_chunk(df, locs): 

1465 """Write marker spans to playlist chunk. 

1466 

1467 See https://www.recordingblogs.com/wiki/playlist-chunk-of-a-wave-file 

1468 

1469 Parameters 

1470 ---------- 

1471 df: stream 

1472 File stream for writing playlist chunk. 

1473 locs: None or 2-D array of ints 

1474 Positions (first column) and spans (optional second column) 

1475 for each marker (rows). 

1476 

1477 Returns 

1478 ------- 

1479 n: int 

1480 Number of bytes written to the stream. 

1481 """ 

1482 if locs is None or len(locs) == 0 or locs.shape[1] < 2: 

1483 return 0 

1484 n_spans = np.sum(locs[:,1] > 0) 

1485 if n_spans == 0: 

1486 return 0 

1487 df.write(b'plst') 

1488 df.write(struct.pack('<II', 4 + n_spans*12, n_spans)) 

1489 for i in range(len(locs)): 

1490 if locs[i,1] > 0: 

1491 df.write(struct.pack('<III', i, locs[i,1], 1)) 

1492 return 12 + n_spans*12 

1493 

1494 

1495def write_adtl_chunks(df, locs, labels): 

1496 """Write associated data list chunks. 

1497 

1498 See https://www.recordingblogs.com/wiki/associated-data-list-chunk-of-a-wave-file 

1499  

1500 Parameters 

1501 ---------- 

1502 df: stream 

1503 File stream for writing adtl chunk. 

1504 locs: None or 2-D array of ints 

1505 Positions (first column) and spans (optional second column) 

1506 for each marker (rows). 

1507 labels: None or 2-D array of string objects 

1508 Labels (first column) and texts (second column) for each marker (rows). 

1509 

1510 Returns 

1511 ------- 

1512 n: int 

1513 Number of bytes written to the stream. 

1514 """ 

1515 if labels is None or len(labels) == 0: 

1516 return 0 

1517 labels_size = 0 

1518 for l in labels[:,0]: 

1519 if hasattr(l, '__len__'): 

1520 n = len(l) 

1521 if n > 0: 

1522 labels_size += 12 + n + n % 2 

1523 text_size = 0 

1524 if labels.shape[1] > 1: 

1525 for t in labels[:,1]: 

1526 if hasattr(t, '__len__'): 

1527 n = len(t) 

1528 if n > 0: 

1529 text_size += 28 + n + n % 2 

1530 if labels_size == 0 and text_size == 0: 

1531 return 0 

1532 size = 4 + labels_size + text_size 

1533 spans = locs[:,1] if locs.shape[1] > 1 else None 

1534 df.write(b'LIST') 

1535 df.write(struct.pack('<I', size)) 

1536 df.write(b'adtl') 

1537 for i in range(len(labels)): 

1538 # labl sub-chunk: 

1539 l = labels[i,0] 

1540 if hasattr(l, '__len__'): 

1541 n = len(l) 

1542 if n > 0: 

1543 n += n % 2 

1544 df.write(b'labl') 

1545 df.write(struct.pack('<II', 4 + n, i)) 

1546 df.write(f'{l:<{n}s}'.encode('latin-1', errors='replace')) 

1547 # ltxt sub-chunk: 

1548 if labels.shape[1] > 1: 

1549 t = labels[i,1] 

1550 if hasattr(t, '__len__'): 

1551 n = len(t) 

1552 if n > 0: 

1553 n += n % 2 

1554 span = spans[i] if spans is not None else 0 

1555 df.write(b'ltxt') 

1556 df.write(struct.pack('<III', 20 + n, i, span)) 

1557 df.write(struct.pack('<IHHHH', 0, 0, 0, 0, 0)) 

1558 df.write(f'{t:<{n}s}'.encode('latin-1', errors='replace')) 

1559 return 8 + size 

1560 

1561 

1562def write_lbl_chunk(df, locs, labels, rate): 

1563 """Write marker positions, spans, labels, and texts to lbl chunk. 

1564  

1565 The proprietary LBL chunk is specific to wave files generated by 

1566 [AviSoft](www.avisoft.com) products. 

1567 

1568 The labels (first column of `labels`) have special meanings. 

1569 Markers with a span (a section label in the terminology of 

1570 AviSoft) can be arranged in three levels when displayed: 

1571 

1572 - "M": layer 1, the top level section 

1573 - "N": layer 2, sections below layer 1 

1574 - "O": layer 3, sections below layer 2 

1575 - "P": total, section start and end are displayed with two vertical lines. 

1576 

1577 All other labels mark single point labels with a time and a 

1578 frequency (that we here discard). See also 

1579 https://www.avisoft.com/Help/SASLab/menu_main_tools_labels.htm 

1580 

1581 If a marker has a span, and its label is not one of "M", "N", "O", or "P", 

1582 then its label is set to "M". 

1583 If a marker has no span, and its label is one of "M", "N", "O", or "P", 

1584 then its label is set to "a". 

1585 

1586 Parameters 

1587 ---------- 

1588 df: stream 

1589 File stream for writing lbl chunk. 

1590 locs: None or 2-D array of ints 

1591 Positions (first column) and spans (optional second column) 

1592 for each marker (rows). 

1593 labels: None or 2-D array of string objects 

1594 Labels (first column) and texts (second column) for each marker (rows). 

1595 rate: float 

1596 Sampling rate of the data in Hertz. 

1597 

1598 Returns 

1599 ------- 

1600 n: int 

1601 Number of bytes written to the stream. 

1602 

1603 """ 

1604 if locs is None or len(locs) == 0: 

1605 return 0 

1606 size = (1 + len(locs)) * 65 

1607 df.write(b'LBL ') 

1608 df.write(struct.pack('<I', size)) 

1609 # first empty entry (this is ment to be a title for the whole wave file): 

1610 df.write(b' ' * 63) 

1611 df.write(b'\r\n') 

1612 for k in range(len(locs)): 

1613 t0 = locs[k,0]/rate 

1614 t1 = t0 

1615 t1 += locs[k,1]/rate 

1616 ls = 'M' if locs[k,1] > 0 else 'a' 

1617 ts = '' 

1618 if labels is not None and len(labels) > k: 

1619 ls = labels[k,0] 

1620 if ls != 0 and len(ls) > 0: 

1621 ls = ls[0] 

1622 if ls in 'MNOP': 

1623 if locs[k,1] == 0: 

1624 ls = 'a' 

1625 else: 

1626 if locs[k,1] > 0: 

1627 ls = 'M' 

1628 ts = labels[k,1] 

1629 if ts == 0: 

1630 ts = '' 

1631 df.write(struct.pack('<14sc', f'{t0:e}'.encode('ascii', errors='replace'), b'\t')) 

1632 df.write(struct.pack('<14sc', f'{t1:e}'.encode('ascii', errors='replace'), b'\t')) 

1633 bs = f'{ts:31s}\t{ls}\r\n'.encode('ascii', errors='replace') 

1634 df.write(bs) 

1635 return 8 + size 

1636 

1637 

1638def append_metadata_riff(df, metadata): 

1639 """Append metadata chunks to RIFF file. 

1640 

1641 You still need to update the filesize by calling 

1642 `write_filesize()`. 

1643 

1644 Parameters 

1645 ---------- 

1646 df: stream 

1647 File stream for writing metadata chunks. 

1648 metadata: None or nested dict 

1649 Metadata as key-value pairs. Values can be strings, integers, 

1650 or dictionaries. 

1651 

1652 Returns 

1653 ------- 

1654 n: int 

1655 Number of bytes written to the stream. 

1656 tags: list of str 

1657 Tag names of chunks written to audio file. 

1658 """ 

1659 if not metadata: 

1660 return 0, [] 

1661 n = 0 

1662 tags = [] 

1663 # metadata INFO chunk: 

1664 nc, kw = write_info_chunk(df, metadata) 

1665 if nc > 0: 

1666 tags.append('LIST-INFO') 

1667 n += nc 

1668 # metadata BEXT chunk: 

1669 nc, bkw = write_bext_chunk(df, metadata) 

1670 if nc > 0: 

1671 tags.append('BEXT') 

1672 n += nc 

1673 kw.extend(bkw) 

1674 # metadata IXML chunk: 

1675 nc, xkw = write_ixml_chunk(df, metadata, kw) 

1676 if nc > 0: 

1677 tags.append('IXML') 

1678 n += nc 

1679 kw.extend(xkw) 

1680 # write remaining metadata to GUANO chunk: 

1681 nc, _ = write_guano_chunk(df, metadata, kw) 

1682 if nc > 0: 

1683 tags.append('GUAN') 

1684 n += nc 

1685 kw.extend(bkw) 

1686 return n, tags 

1687 

1688 

1689def append_markers_riff(df, locs, labels=None, rate=None, 

1690 marker_hint='cue'): 

1691 """Append marker chunks to RIFF file. 

1692 

1693 You still need to update the filesize by calling 

1694 `write_filesize()`. 

1695 

1696 Parameters 

1697 ---------- 

1698 df: stream 

1699 File stream for writing metadata chunks. 

1700 locs: None or 1-D or 2-D array of ints 

1701 Marker positions (first column) and spans (optional second column) 

1702 for each marker (rows). 

1703 labels: None or 1-D or 2-D array of string objects 

1704 Labels (first column) and texts (optional second column) 

1705 for each marker (rows). 

1706 rate: float 

1707 Sampling rate of the data in Hertz, needed for storing markers 

1708 in seconds. 

1709 marker_hint: str 

1710 - 'cue': store markers in cue and and adtl chunks. 

1711 - 'lbl': store markers in avisoft lbl chunk. 

1712 

1713 Returns 

1714 ------- 

1715 n: int 

1716 Number of bytes written to the stream. 

1717 tags: list of str 

1718 Tag names of chunks written to audio file. 

1719  

1720 Raises 

1721 ------ 

1722 ValueError 

1723 Encoding not supported. 

1724 IndexError 

1725 `locs` and `labels` differ in len. 

1726 """ 

1727 if locs is None or len(locs) == 0: 

1728 return 0, [] 

1729 if labels is not None and len(labels) > 0 and len(labels) != len(locs): 

1730 raise IndexError(f'locs and labels must have same number of elements.') 

1731 # make locs and labels 2-D: 

1732 if not locs is None and locs.ndim == 1: 

1733 locs = locs.reshape(-1, 1) 

1734 if not labels is None and labels.ndim == 1: 

1735 labels = labels.reshape(-1, 1) 

1736 # sort markers according to their position: 

1737 idxs = np.argsort(locs[:,0]) 

1738 locs = locs[idxs,:] 

1739 if not labels is None and len(labels) > 0: 

1740 labels = labels[idxs,:] 

1741 n = 0 

1742 tags = [] 

1743 if marker_hint.lower() == 'cue': 

1744 # write marker positions: 

1745 nc = write_cue_chunk(df, locs) 

1746 if nc > 0: 

1747 tags.append('CUE ') 

1748 n += nc 

1749 # write marker spans: 

1750 nc = write_playlist_chunk(df, locs) 

1751 if nc > 0: 

1752 tags.append('PLST') 

1753 n += nc 

1754 # write marker labels: 

1755 nc = write_adtl_chunks(df, locs, labels) 

1756 if nc > 0: 

1757 tags.append('LIST-ADTL') 

1758 n += nc 

1759 elif marker_hint.lower() == 'lbl': 

1760 # write avisoft labels: 

1761 nc = write_lbl_chunk(df, locs, labels, rate) 

1762 if nc > 0: 

1763 tags.append('LBL ') 

1764 n += nc 

1765 else: 

1766 raise ValueError(f'marker_hint "{marker_hint}" not supported for storing markers') 

1767 return n, tags 

1768 

1769 

1770def write_wave(filepath, data, rate, metadata=None, locs=None, 

1771 labels=None, encoding=None, marker_hint='cue'): 

1772 """Write time series, metadata and markers to a WAVE file. 

1773 

1774 Only 16 or 32bit PCM encoding is supported. 

1775 

1776 Parameters 

1777 ---------- 

1778 filepath: string 

1779 Full path and name of the file to write. 

1780 data: 1-D or 2-D array of floats 

1781 Array with the data (first index time, second index channel, 

1782 values within -1.0 and 1.0). 

1783 rate: float 

1784 Sampling rate of the data in Hertz. 

1785 metadata: None or nested dict 

1786 Metadata as key-value pairs. Values can be strings, integers, 

1787 or dictionaries. 

1788 locs: None or 1-D or 2-D array of ints 

1789 Marker positions (first column) and spans (optional second column) 

1790 for each marker (rows). 

1791 labels: None or 1-D or 2-D array of string objects 

1792 Labels (first column) and texts (optional second column) 

1793 for each marker (rows). 

1794 encoding: string or None 

1795 Encoding of the data: 'PCM_32' or 'PCM_16'. 

1796 If None or empty string use 'PCM_16'. 

1797 marker_hint: str 

1798 - 'cue': store markers in cue and and adtl chunks. 

1799 - 'lbl': store markers in avisoft lbl chunk. 

1800 

1801 Raises 

1802 ------ 

1803 ValueError 

1804 Encoding not supported. 

1805 IndexError 

1806 `locs` and `labels` differ in len. 

1807 

1808 See Also 

1809 -------- 

1810 audioio.audiowriter.write_audio() 

1811 

1812 Examples 

1813 -------- 

1814 ``` 

1815 import numpy as np 

1816 from audioio.riffmetadata import write_wave 

1817  

1818 rate = 28000.0 

1819 freq = 800.0 

1820 time = np.arange(0.0, 1.0, 1/rate) # one second 

1821 data = np.sin(2.0*np.p*freq*time) # 800Hz sine wave 

1822 md = dict(Artist='underscore_') # metadata 

1823 

1824 write_wave('audio/file.wav', data, rate, md) 

1825 ``` 

1826 """ 

1827 if not filepath: 

1828 raise ValueError('no file specified!') 

1829 if not encoding: 

1830 encoding = 'PCM_16' 

1831 encoding = encoding.upper() 

1832 bits = 0 

1833 if encoding == 'PCM_16': 

1834 bits = 16 

1835 elif encoding == 'PCM_32': 

1836 bits = 32 

1837 else: 

1838 raise ValueError(f'file encoding {encoding} not supported') 

1839 if locs is not None and len(locs) > 0 and \ 

1840 labels is not None and len(labels) > 0 and len(labels) != len(locs): 

1841 raise IndexError(f'locs and labels must have same number of elements.') 

1842 # write WAVE file: 

1843 with open(filepath, 'wb') as df: 

1844 write_riff_chunk(df) 

1845 if data.ndim == 1: 

1846 write_format_chunk(df, 1, len(data), rate, bits) 

1847 else: 

1848 write_format_chunk(df, data.shape[1], data.shape[0], 

1849 rate, bits) 

1850 append_metadata_riff(df, metadata) 

1851 write_data_chunk(df, data, bits) 

1852 append_markers_riff(df, locs, labels, rate, marker_hint) 

1853 write_filesize(df) 

1854 

1855 

1856def append_riff(filepath, metadata=None, locs=None, labels=None, 

1857 rate=None, marker_hint='cue'): 

1858 """Append metadata and markers to an existing RIFF file. 

1859 

1860 Parameters 

1861 ---------- 

1862 filepath: string 

1863 Full path and name of the file to write. 

1864 metadata: None or nested dict 

1865 Metadata as key-value pairs. Values can be strings, integers, 

1866 or dictionaries. 

1867 locs: None or 1-D or 2-D array of ints 

1868 Marker positions (first column) and spans (optional second column) 

1869 for each marker (rows). 

1870 labels: None or 1-D or 2-D array of string objects 

1871 Labels (first column) and texts (optional second column) 

1872 for each marker (rows). 

1873 rate: float 

1874 Sampling rate of the data in Hertz, needed for storing markers 

1875 in seconds. 

1876 marker_hint: str 

1877 - 'cue': store markers in cue and and adtl chunks. 

1878 - 'lbl': store markers in avisoft lbl chunk. 

1879 

1880 Returns 

1881 ------- 

1882 n: int 

1883 Number of bytes written to the stream. 

1884  

1885 Raises 

1886 ------ 

1887 IndexError 

1888 `locs` and `labels` differ in len. 

1889 

1890 Examples 

1891 -------- 

1892 ``` 

1893 import numpy as np 

1894 from audioio.riffmetadata import append_riff 

1895  

1896 md = dict(Artist='underscore_') # metadata 

1897 append_riff('audio/file.wav', md) # append them to existing audio file 

1898 ``` 

1899 """ 

1900 if not filepath: 

1901 raise ValueError('no file specified!') 

1902 if locs is not None and len(locs) > 0 and \ 

1903 labels is not None and len(labels) > 0 and len(labels) != len(locs): 

1904 raise IndexError(f'locs and labels must have same number of elements.') 

1905 # check RIFF file: 

1906 chunks = read_chunk_tags(filepath) 

1907 # append to RIFF file: 

1908 n = 0 

1909 with open(filepath, 'r+b') as df: 

1910 tags = [] 

1911 df.seek(0, os.SEEK_END) 

1912 nc, tgs = append_metadata_riff(df, metadata) 

1913 n += nc 

1914 tags.extend(tgs) 

1915 nc, tgs = append_markers_riff(df, locs, labels, rate, marker_hint) 

1916 n += nc 

1917 tags.extend(tgs) 

1918 write_filesize(df) 

1919 # blank out already existing chunks: 

1920 for tag in chunks: 

1921 if tag in tags: 

1922 if '-' in tag: 

1923 xtag = tag[5:7] + 'xx' 

1924 else: 

1925 xtag = tag[:2] + 'xx' 

1926 write_chunk_name(df, chunks[tag][0], xtag) 

1927 return 0 

1928 

1929 

1930def demo(filepath): 

1931 """Print metadata and markers of a RIFF/WAVE file. 

1932 

1933 Parameters 

1934 ---------- 

1935 filepath: string 

1936 Path of a RIFF/WAVE file. 

1937 """ 

1938 def print_meta_data(meta_data, level=0): 

1939 for sk in meta_data: 

1940 md = meta_data[sk] 

1941 if isinstance(md, dict): 

1942 print(f'{"":<{level*4}}{sk}:') 

1943 print_meta_data(md, level+1) 

1944 else: 

1945 v = str(md).replace('\n', '.').replace('\r', '.') 

1946 print(f'{"":<{level*4}s}{sk:<20s}: {v}') 

1947 

1948 # read meta data: 

1949 meta_data = metadata_riff(filepath, store_empty=False) 

1950 

1951 # print meta data: 

1952 print() 

1953 print('metadata:') 

1954 print_meta_data(meta_data) 

1955 

1956 # read cues: 

1957 locs, labels = markers_riff(filepath) 

1958 

1959 # print marker table: 

1960 if len(locs) > 0: 

1961 print() 

1962 print('markers:') 

1963 print(f'{"position":10} {"span":8} {"label":10} {"text":10}') 

1964 for i in range(len(locs)): 

1965 if i < len(labels): 

1966 print(f'{locs[i,0]:10} {locs[i,1]:8} {labels[i,0]:10} {labels[i,1]:30}') 

1967 else: 

1968 print(f'{locs[i,0]:10} {locs[i,1]:8} {"-":10} {"-":10}') 

1969 

1970 

1971def main(*args): 

1972 """Call demo with command line arguments. 

1973 

1974 Parameters 

1975 ---------- 

1976 args: list of strings 

1977 Command line arguments as returned by sys.argv[1:] 

1978 """ 

1979 if len(args) > 0 and (args[0] == '-h' or args[0] == '--help'): 

1980 print() 

1981 print('Usage:') 

1982 print(' python -m src.audioio.riffmetadata [--help] <audio/file.wav>') 

1983 print() 

1984 return 

1985 

1986 if len(args) > 0: 

1987 demo(args[0]) 

1988 else: 

1989 rate = 44100 

1990 t = np.arange(0, 2, 1/rate) 

1991 x = np.sin(2*np.pi*440*t) 

1992 imd = dict(IENG='JB', ICRD='2024-01-24', RATE=9, 

1993 Comment='this is test1') 

1994 bmd = dict(Description='a recording', 

1995 OriginationDate='2024:01:24', TimeReference=123456, 

1996 Version=42, CodingHistory='Test1\nTest2') 

1997 xmd = dict(Project='Record all', Note='still testing', 

1998 Sync_Point_List=dict(Sync_Point=1, 

1999 Sync_Point_Comment='great')) 

2000 omd = imd.copy() 

2001 omd['Production'] = bmd 

2002 md = dict(INFO=imd, BEXT=bmd, IXML=xmd, 

2003 Recording=omd, Notes=xmd) 

2004 locs = np.random.randint(10, len(x)-10, (5, 2)) 

2005 locs = locs[np.argsort(locs[:,0]),:] 

2006 locs[:,1] = np.random.randint(0, 20, len(locs)) 

2007 labels = np.zeros((len(locs), 2), dtype=object) 

2008 for i in range(len(labels)): 

2009 labels[i,0] = chr(ord('a') + i % 26) 

2010 labels[i,1] = chr(ord('A') + i % 26)*5 

2011 write_wave('test.wav', x, rate, md, locs, labels) 

2012 demo('test.wav') 

2013 

2014 

2015if __name__ == "__main__": 

2016 main(*sys.argv[1:])