Coverage for src/thunderfish/chirp.py: 0%
87 statements
« prev ^ index » next coverage.py v7.5.0, created at 2024-04-29 16:21 +0000
« prev ^ index » next coverage.py v7.5.0, created at 2024-04-29 16:21 +0000
1"""
2Detection of chirps in weakly electric fish recordings.
4- `chirp_analysis()`: calculates spectrogram, detects fishes and extracts chirp times(combined for all fishes).
5 !!! recommended for short recordings (up to 5 min) where only the chirp times shall be extracted !!!
6- `chirp_detection()`: extracts chirp times with help of given spectrogram and fishlist.
7"""
9import numpy as np
10import matplotlib.pyplot as plt
11from thunderlab.powerspectrum import spectrogram
12from thunderlab.eventdetection import std_threshold, detect_peaks, trim_to_peak
13from .harmonics import harmonic_groups
16def true_chirp_power_drop(chirp_time_idx, power, power_window=100):
17 """
18 Chirp is only accepted as such if the power of the frequency drops down as expected.
20 :param chirp_time_idx: (array) indices of chirps.
21 :param power: (array) power array containing for each timestamp the max value in power of a certain frequency range.
22 :param power_window (int) datapoints arroung a detected chirp used to verify that there is a chirp.
23 :return: chirp_time_idx: (array) indices of chirps that have been confirmed to be chirps.
24 """
26 true_chirp_time_idx = []
28 for i in range(len(chirp_time_idx)):
29 idx0 = int(chirp_time_idx[i] - power_window/2)
30 if idx0 < 0:
31 idx0 = 0
32 idx1 = int(chirp_time_idx[i] + power_window/2)
33 if idx1 > len(power):
34 idx1 = len(power)
36 tmp_median = np.median(power[idx0:idx1])
37 tmp_std = np.std(power[idx0:idx1], ddof=1)
39 if np.min(power[idx0:idx1]) < tmp_median - 3*tmp_std:
40 true_chirp_time_idx.append(chirp_time_idx[i])
42 return np.array(true_chirp_time_idx)
45def true_chirp_power_rise_above(chirp_time_idx, power_above):
47 median_power_above = np.median(power_above)
48 std_power_above = np.std(power_above, ddof=1)
50 if median_power_above > 0.001:
51 print('another fish disturbs the chirp approval! Have to rely on other algorithms.')
52 return chirp_time_idx
53 else:
54 true_chirp_time_idx = []
56 for i in range(len(chirp_time_idx)):
57 if power_above[int(chirp_time_idx[i])] > median_power_above + 3*std_power_above:
58 true_chirp_time_idx.append(chirp_time_idx[i])
60 return true_chirp_time_idx
63def chirp_detection(spectrum, freqs, time, fishlist=None, fundamentals=None, min_power= 0.005, freq_tolerance=1., chirp_th=1.,
64 plot_data_func=None):
65 """
66 Detects chirps on the basis of a spectrogram.
68 :param spectrum: (2d-array) spectrum calulated with the `spectrogram()` function.
69 :param freqs: (array) frequencies of the spectrum.
70 :param time: (array) time of the nffts used in the spectrum.
71 :param fishlist: (array) power und frequncy for each fundamental/harmonic of a detected fish.
72 fishlist[fish][harmonic][frequency, power]
73 :param min_power: (float) minimum power of the fundamental frequency for each fish to participate in chirp detection.
74 :param freq_tolerance: (float) frequency tolerance in the spectrum to detect the power of a certain frequency.
75 :param chirp_th: (float) minimum chirp duration to be accepted as a chirp.
76 :param plot_data: (bool) If True: plots the process of chirp detection.
77 :return:chirp_time: (array) array of times (in sec) where chirps have been detected.
78 """
79 if not hasattr(fundamentals, '__len__'):
80 if not hasattr(fishlist, '__len__'):
81 print('fishlist or fundamentals missing as argument !!!')
82 quit()
83 else:
84 fundamentals = []
85 for fish in fishlist:
86 if fish[0][1] > min_power:
87 fundamentals.append(fish[0][0])
89 chirp_time = np.array([])
90 chirp_freq = np.array([])
92 for enu, fundamental in enumerate(fundamentals):
93 # extract power of only the part of the spectrum that has to be analysied for each fundamental and get the peak
94 # power of every piont in time.
95 power = np.max(spectrum[(freqs >= fundamental - freq_tolerance) & (freqs <= fundamental + freq_tolerance)], axis=0)
96 power_above = np.max(spectrum[(freqs >= fundamental + 50.0 -freq_tolerance) & (freqs <= fundamental + 50.0 + freq_tolerance)], axis=0)
97 #power = np.mean(spectrum[(freqs >= fundamental - freq_tolerance) & (freqs <= fundamental + freq_tolerance)], axis=0)
98 # calculate the slope by calculating the difference in the power
99 power_diff = np.diff(power)
101 # peak detection in the power_diff to detect drops in power indicating chrips
102 threshold = std_threshold(power_diff)
103 peaks, troughs = detect_peaks(power_diff, threshold)
104 troughs, peaks = trim_to_peak(troughs, peaks) # reversed troughs and peaks in output and input to get trim_to_troughs
106 # exclude peaks and troughs with to much time diff to be a chirp
107 # ToDO: not nice !!!
108 peaks = peaks[(troughs - peaks) < chirp_th]
109 troughs = troughs[(troughs - peaks) < chirp_th]
111 if len(troughs) > 0:
112 # chirps times defined as the mean time between the troughs and peaks
113 chirp_time_idx = np.mean([troughs, peaks], axis=0)
115 # exclude detected chirps if the powervalue doesn't drop far enought
116 chirp_time_idx = true_chirp_power_drop(chirp_time_idx, power)
118 # chirp_time_idx = true_chirp_power_rise_above(chirp_time_idx, power_above)
119 # add times of detected chirps to the list.
120 chirp_time = np.concatenate((chirp_time, np.array([time[int(i)] for i in chirp_time_idx])))
121 chirp_freq = np.concatenate((chirp_freq, np.array(fundamental* np.ones(len(chirp_time_idx)))))
123 else:
124 chirp_time = np.array([])
125 chirp_freq = np.array([])
127 if plot_data_func:
128 plot_data_func(enu, chirp_time, time, power, power_above, power_diff, fundamental)
130 return chirp_time, chirp_freq
133def chirp_detection_plot(enu, chirp_time, time, power, power2, power_diff, fundamental):
134 """
135 plots the process of chirp detection.
137 :param enu: (int) indication which fish in list is processed.
138 :param chirp_time: (array) timestamps when chirps have been detected.
139 :param time: (array) time array.
140 :param power: (array) power of a certain frequency band.
141 :param power_diff: (array) slope of the power array.
142 :param fundamental: (float) fundamental frequency around which the algorithm looked for chirps.
143 """
144 try:
145 ax
146 except NameError:
147 fig, ax = plt.subplots()
148 colors = ['r', 'g', 'k', 'blue', 'r', 'g', 'k', 'blue', 'r', 'g', 'k', 'blue', 'r', 'g', 'k', 'blue']
149 # if enu == 0:
150 # fig, ax = plt.subplots()
151 # colors = ['r', 'g', 'k', 'blue', 'r', 'g', 'k', 'blue', 'r', 'g', 'k', 'blue', 'r', 'g', 'k', 'blue']
152 ax.plot(chirp_time, np.zeros(len(chirp_time)), 'o', markersize=10, color=colors[enu], alpha=0.8, label='chirps')
153 ax.set_xlabel('time in sec')
154 ax.set_ylabel('power')
156 ax.plot(time, power, colors[enu], marker='.', label='%.1f Hz' % fundamental)
157 ax.plot(time, power2, colors[enu+1], label='%.1f Hz' % (fundamental+50.0))
158 ax.plot(time[:len(power_diff)], power_diff, colors[enu], label='slope')
159 ax.legend(loc='upper right', bbox_to_anchor=(1, 1), frameon=False)
162def chirp_analysis(data, samplerate):
163 """
164 Performs all steps to detect chirps in a given dataset. This includes spectrogram calculation, fish detection and
165 analysing of specific frequency bands.
166 For further documentation see functions chirp_spectrogram() and chirp_detection().
167 !!! recommended for short recordings (up to 5 min) where only the chirp times shall be extracted !!!
169 :param data: (array) data.
170 :param samplerate: (float) smaplerate of the data.
171 :param min_power: (float) minimal power of the fish fundamental to include this fish in chirp detection.
172 """
173 freqs, time, spectrum = spectrogram(data, samplerate, freq_resolution=2., overlap_frac=0.95)
175 power = np.mean(spectrum, axis=1) # spectrum[:, t0:t1] to only let spectrum of certain time....
177 fishlist = harmonic_groups(freqs, power)[0]
179 chirp_time, chirp_freq = chirp_detection(spectrum, freqs, time, fishlist, plot_data_func=chirp_detection_plot)
181 plt.show()
183 return chirp_time, chirp_freq
186if __name__ == '__main__':
187 ###
188 # If you want to test the code I propose to use the file '60427L05.WAV' of the transect
189 # '2016_04_27__downstream_stonewall_at_pool' made in colombia, 2016.
190 ###
191 import sys
192 import matplotlib.pyplot as plt
193 from thunderlab.dataloader import load_data
195 data_file = sys.argv[1]
196 raw_data, samplerate, unit, amax = load_data(data_file)
198 chirp_time, chirp_freq = chirp_analysis(raw_data[:,0], samplerate)
200 # power = np.mean(spectrum[:, t:t + nffts_per_psd], axis=1)