Coverage for src/thunderfish/thunderfish.py: 0%

921 statements  

« prev     ^ index     » next       coverage.py v7.7.1, created at 2025-03-23 22:57 +0000

1"""# thunderfish 

2 

3Automatically detect and analyze all EOD waveforms in short recordings 

4and generated summary plots and data tables. 

5 

6Run it from the thunderfish development directory as: 

7```sh 

8> python3 -m thunderfish.thunderfish audiofile.wav 

9``` 

10Or install thunderfish 

11```sh 

12> sudo pip3 install . 

13``` 

14Then you can run it directly from every directory: 

15```sh 

16> thunderfish audiofile.wav 

17``` 

18""" 

19 

20import sys 

21import os 

22import glob 

23import io 

24import zipfile 

25import argparse 

26import traceback 

27import numpy as np 

28import matplotlib.pyplot as plt 

29import matplotlib.gridspec as gridspec 

30import matplotlib.ticker as ticker 

31import matplotlib.lines as ml 

32from matplotlib.transforms import Bbox 

33from matplotlib.backends.backend_pdf import PdfPages 

34from multiprocessing import Pool, freeze_support, cpu_count 

35from audioio import play, fade, load_audio 

36from thunderlab.configfile import ConfigFile 

37from thunderlab.dataloader import load_data 

38from thunderlab.powerspectrum import decibel, plot_decibel_psd, multi_psd 

39from thunderlab.powerspectrum import add_multi_psd_config, multi_psd_args 

40from thunderlab.tabledata import TableData, add_write_table_config, write_table_args 

41from .version import __version__, __year__ 

42from .bestwindow import add_clip_config, add_best_window_config 

43from .bestwindow import clip_args, best_window_args 

44from .bestwindow import analysis_window, plot_data_window 

45from .checkpulse import check_pulse, add_check_pulse_config, check_pulse_args 

46from .pulses import extract_pulsefish 

47from .harmonics import add_psd_peak_detection_config, add_harmonic_groups_config 

48from .harmonics import harmonic_groups, harmonic_groups_args, psd_peak_detection_args 

49from .harmonics import colors_markers, plot_harmonic_groups 

50from .consistentfishes import consistent_fishes 

51from .eodanalysis import eod_waveform, waveeod_waveform, analyze_wave, analyze_pulse 

52from .eodanalysis import clipped_fraction 

53from .eodanalysis import plot_eod_recording, plot_pulse_eods 

54from .eodanalysis import plot_eod_waveform, plot_eod_snippets 

55from .eodanalysis import plot_pulse_spectrum, plot_wave_spectrum 

56from .eodanalysis import add_eod_analysis_config, eod_waveform_args 

57from .eodanalysis import analyze_wave_args, analyze_pulse_args 

58from .eodanalysis import add_species_config 

59from .eodanalysis import wave_quality, wave_quality_args, add_eod_quality_config 

60from .eodanalysis import pulse_quality, pulse_quality_args 

61from .eodanalysis import save_eod_waveform, save_wave_eodfs, save_wave_fish, save_pulse_fish 

62from .eodanalysis import save_wave_spectrum, save_pulse_spectrum, save_pulse_peaks, save_pulse_times 

63from .eodanalysis import load_eod_waveform, load_wave_eodfs, load_wave_fish, load_pulse_fish 

64from .eodanalysis import load_wave_spectrum, load_pulse_spectrum, load_pulse_peaks 

65from .eodanalysis import save_analysis, load_analysis, load_recording 

66from .eodanalysis import parse_filename, file_types 

67 

68 

69# Colors taken from https://github.com/bendalab/plottools/blob/master/src/plottools/colors.py (colors_vivid) 

70 

71trace_color = '#D71000' 

72""" Default color for traces.""" 

73 

74data_color = '#1040C0' 

75""" Default color for the full data trace.""" 

76 

77fit_color = '#E09080' 

78""" Default color for fits.""" 

79 

80spectrum_color = '#1040C0' 

81""" Default color for power spectra.""" 

82 

83data_styles = dict(dstyle=dict(color=data_color, lw=1.4), 

84 wstyle=dict(color=trace_color, lw=1.4)) 

85 

86trace_style = dict(color=trace_color, lw=2) 

87 

88spectrum_style = dict(color=spectrum_color, lw=2) 

89 

90eod_styles = dict(mstyle=dict(color=trace_color, lw=3), 

91 pstyle=dict(facecolor='#00A050', alpha=0.2, 

92 edgecolor='none'), 

93 nstyle=dict(facecolor='#1040C0', alpha=0.2, 

94 edgecolor='none'), 

95 sstyle=dict(color='0.8'), 

96 fstyle=dict(color=fit_color, lw=6), 

97 zstyle=dict(color='0.3', lw=1)) 

98 

99snippet_style = dict(scaley=False, lw=0.5, color='0.6') 

100 

101wave_spec_styles = dict(mstyle=dict(color=spectrum_color, markersize=10), 

102 sstyle=dict(color=spectrum_color, alpha=0.5, lw=2)) 

103 

104pulse_spec_styles = dict(sstyle=dict(color=spectrum_color, lw=3), 

105 pstyle=dict(ls='', marker='o', markersize=12, 

106 color=spectrum_color, mec='none', mew=0, 

107 alpha=0.6), 

108 cstyle=dict(ls='-', color='0.5', lw=1), 

109 att5_color='0.8', 

110 att50_color='0.9') 

111 

112def configuration(): 

113 """Assemble configuration parameter for thunderfish. 

114 

115 Returns 

116 ------- 

117 cfg: ConfigFile 

118 Configuration parameters. 

119 """ 

120 cfg = ConfigFile() 

121 add_multi_psd_config(cfg) 

122 cfg.add('frequencyThreshold', 1.0, 'Hz', 

123 'The fundamental frequency of each fish needs to be detected in each power spectrum within this threshold.') 

124 # TODO: make this threshold dependent on frequency resolution! 

125 cfg.add('minPSDAverages', 3, '', 'Minimum number of fft averages for estimating the power spectrum.') # needed by fishfinder 

126 add_psd_peak_detection_config(cfg) 

127 add_harmonic_groups_config(cfg) 

128 add_clip_config(cfg) 

129 cfg.add('unwrapData', False, '', 'Unwrap clipped voltage traces.') 

130 add_best_window_config(cfg, win_size=8.0, w_cv_ampl=10.0) 

131 add_check_pulse_config(cfg) 

132 add_eod_analysis_config(cfg, min_pulse_win=0.004) 

133 del cfg['eodSnippetFac'] 

134 del cfg['eodMinSnippet'] 

135 del cfg['eodMinSem'] 

136 add_eod_quality_config(cfg) 

137 add_species_config(cfg) 

138 add_write_table_config(cfg, table_format='csv', unit_style='row', 

139 align_columns=True, shrink_width=False) 

140 return cfg 

141 

142 

143def save_configuration(cfg, config_file): 

144 """Save configuration parameter for thunderfish to a file. 

145 

146 Parameters 

147 ---------- 

148 cfg: ConfigFile 

149 Configuration parameters and their values. 

150 config_file: string 

151 Name of the configuration file to be loaded. 

152 """ 

153 ext = os.path.splitext(config_file)[1] 

154 if ext != os.extsep + 'cfg': 

155 print('configuration file name must have .cfg as extension!') 

156 else: 

157 print('write configuration to %s ...' % config_file) 

158 del cfg['fileColumnNumbers'] 

159 del cfg['fileShrinkColumnWidth'] 

160 del cfg['fileMissing'] 

161 del cfg['fileLaTeXLabelCommand'] 

162 del cfg['fileLaTeXMergeStd'] 

163 cfg.dump(config_file) 

164 

165 

166def detect_eods(data, rate, min_clip, max_clip, name, mode, 

167 verbose, plot_level, cfg): 

168 """Detect EODs of all fish present in the data. 

169 

170 Parameters 

171 ---------- 

172 data: array of floats 

173 The recording in which to detect EODs. 

174 rate: float 

175 Sampling rate of the dataset. 

176 min_clip: float 

177 Minimum amplitude that is not clipped. 

178 max_clip: float 

179 Maximum amplitude that is not clipped. 

180 name: string 

181 Name of the recording (e.g. its filename). 

182 mode: string 

183 Characters in the string indicate what and how to analyze: 

184 - 'w': analyze wavefish 

185 - 'p': analyze pulsefish 

186 - 'P': analyze only the pulsefish with the largest amplitude (not implemented yet)  

187 verbose: int 

188 Print out information about EOD detection if greater than zero. 

189 plot_level : int 

190 Similar to verbosity levels, but with plots.  

191 cfg: ConfigFile 

192 Configuration parameters. 

193 

194 Returns 

195 ------- 

196 psd_data: list of 2D arrays 

197 List of power spectra (frequencies and power) of the analysed data 

198 for different frequency resolutions. 

199 wave_eodfs: list of 2D arrays 

200 Frequency and power of fundamental frequency/harmonics of all wave fish. 

201 wave_indices: array of int 

202 Indices of wave fish mapping from wave_eodfs to eod_props. 

203 If negative, then that EOD frequency has no waveform described in eod_props. 

204 eod_props: list of dict 

205 Lists of EOD properties as returned by analyze_pulse() and analyze_wave() 

206 for each waveform in mean_eods. 

207 mean_eods: list of 2-D arrays with time, mean, sem, and fit. 

208 Averaged EOD waveforms of pulse and wave fish. 

209 spec_data: list of 2_D arrays 

210 For each pulsefish a power spectrum of the single pulse and for 

211 each wavefish the relative amplitudes and phases of the harmonics. 

212 peak_data: list of 2_D arrays 

213 For each pulse fish a list of peak properties 

214 (index, time, and amplitude), empty array for wave fish. 

215 power_thresh: 2 D array or None 

216 Frequency (first column) and power (second column) of threshold 

217 derived from single pulse spectra to discard false wave fish. 

218 None if no pulse fish was detected. 

219 skip_reason: list of string 

220 Reasons, why an EOD was discarded. 

221 """ 

222 dfreq = np.nan 

223 nfft = 0 

224 psd_data = [[]] 

225 wave_eodfs = [] 

226 wave_indices = [] 

227 if 'w' in mode: 

228 # detect wave fish: 

229 psd_data = multi_psd(data, rate, **multi_psd_args(cfg)) 

230 dfreq = np.mean(np.diff(psd_data[0][:,0])) 

231 nfft = int(rate/dfreq) 

232 h_kwargs = psd_peak_detection_args(cfg) 

233 h_kwargs.update(harmonic_groups_args(cfg)) 

234 wave_eodfs_list = [] 

235 for i, psd in enumerate(psd_data): 

236 wave_eodfs = harmonic_groups(psd[:,0], psd[:,1], verbose-1, **h_kwargs)[0] 

237 if verbose > 0 and len(psd_data) > 1: 

238 numpsdresolutions = cfg.value('numberPSDResolutions') 

239 print('fundamental frequencies detected in power spectrum of window %d at resolution %d:' 

240 % (i//numpsdresolutions, i%numpsdresolutions)) 

241 if len(wave_eodfs) > 0: 

242 print(' ' + ' '.join(['%.1f' % freq[0, 0] for freq in wave_eodfs])) 

243 else: 

244 print(' none') 

245 wave_eodfs_list.append(wave_eodfs) 

246 wave_eodfs = consistent_fishes(wave_eodfs_list, 

247 df_th=cfg.value('frequencyThreshold')) 

248 if verbose > 0: 

249 if len(wave_eodfs) > 0: 

250 print('found %2d EOD frequencies consistent in all power spectra:' % len(wave_eodfs)) 

251 print(' ' + ' '.join(['%.1f' % freq[0, 0] for freq in wave_eodfs])) 

252 else: 

253 print('no fundamental frequencies are consistent in all power spectra') 

254 

255 # analysis results: 

256 eod_props = [] 

257 mean_eods = [] 

258 spec_data = [] 

259 peak_data = [] 

260 power_thresh = None 

261 skip_reason = [] 

262 max_pulse_amplitude = 0.0 

263 zoom_window = [] 

264 

265 if 'p' in mode: 

266 # detect pulse fish: 

267 _, eod_times, eod_peaktimes, zoom_window, _ = \ 

268 extract_pulsefish(data, rate, max_clip, verbose=verbose-1, 

269 plot_level=plot_level, 

270 save_path=os.path.splitext(os.path.basename(name))[0]) 

271 

272 #eod_times = [] 

273 #eod_peaktimes = [] 

274 if verbose > 0: 

275 if len(eod_times) > 0: 

276 print('found %2d pulsefish EODs' % len(eod_times)) 

277 else: 

278 print('no pulsefish EODs found') 

279 

280 # analyse eod waveform of pulse-fish: 

281 min_freq_res = cfg.value('frequencyResolution') 

282 for k, (eod_ts, eod_pts) in enumerate(zip(eod_times, eod_peaktimes)): 

283 mean_eod, eod_times0 = \ 

284 eod_waveform(data, rate, eod_ts, win_fac=0.8, 

285 min_win=cfg.value('eodMinPulseSnippet'), 

286 min_sem=False, **eod_waveform_args(cfg)) 

287 mean_eod, props, peaks, power = analyze_pulse(mean_eod, eod_times0, 

288 freq_resolution=min_freq_res, 

289 **analyze_pulse_args(cfg)) 

290 if len(peaks) == 0: 

291 print('error: no peaks in pulse EOD detected') 

292 continue 

293 clipped_frac = clipped_fraction(data, rate, eod_times0, 

294 mean_eod, min_clip, max_clip) 

295 props['peaktimes'] = eod_pts # XXX that should go into analyze pulse 

296 props['index'] = len(eod_props) 

297 props['clipped'] = clipped_frac 

298 props['samplerate'] = rate 

299 props['nfft'] = nfft 

300 props['dfreq'] = dfreq 

301 

302 # add good waveforms only: 

303 skips, msg, skipped_clipped = pulse_quality(props, **pulse_quality_args(cfg)) 

304 

305 if len(skips) == 0: 

306 eod_props.append(props) 

307 mean_eods.append(mean_eod) 

308 spec_data.append(power) 

309 peak_data.append(peaks) 

310 if verbose > 0: 

311 print('take %6.1fHz pulse fish: %s' % (props['EODf'], msg)) 

312 else: 

313 skip_reason += ['%.1fHz pulse fish %s' % (props['EODf'], skips)] 

314 if verbose > 0: 

315 print('skip %6.1fHz pulse fish: %s (%s)' % 

316 (props['EODf'], skips, msg)) 

317 

318 # threshold for wave fish peaks based on single pulse spectra: 

319 if len(skips) == 0 or skipped_clipped: 

320 if max_pulse_amplitude < props['p-p-amplitude']: 

321 max_pulse_amplitude = props['p-p-amplitude'] 

322 i0 = np.argmin(np.abs(mean_eod[:,0])) 

323 i1 = len(mean_eod) - i0 

324 pulse_data = np.zeros(len(data)) 

325 for t in props['peaktimes']: 

326 idx = int(t*rate) 

327 ii0 = i0 if idx-i0 >= 0 else idx 

328 ii1 = i1 if idx+i1 < len(pulse_data) else len(pulse_data)-1-idx 

329 pulse_data[idx-ii0:idx+ii1] = mean_eod[i0-ii0:i0+ii1,1] 

330 pulse_psd = multi_psd(pulse_data, rate, **multi_psd_args(cfg)) 

331 pulse_power = pulse_psd[0][:,1] 

332 pulse_power *= len(data)/rate/props['period']/len(props['peaktimes']) 

333 pulse_power *= 5.0 

334 if power_thresh is None: 

335 power_thresh = pulse_psd[0] 

336 power_thresh[:,1] = pulse_power 

337 else: 

338 power_thresh[:,1] += pulse_power 

339 

340 # remove wavefish below pulse fish power: 

341 if 'w' in mode and power_thresh is not None: 

342 n = len(wave_eodfs) 

343 maxh = 3 # XXX make parameter 

344 df = power_thresh[1,0] - power_thresh[0,0] 

345 for k, fish in enumerate(reversed(wave_eodfs)): 

346 idx = np.array(fish[:maxh,0]//df, dtype=int) 

347 for offs in range(-2, 3): 

348 nbelow = np.sum(fish[:maxh,1] < power_thresh[idx+offs,1]) 

349 if nbelow > 0: 

350 wave_eodfs.pop(n-1-k) 

351 if verbose > 0: 

352 print('skip %6.1fHz wave fish: %2d harmonics are below pulsefish threshold' % (fish[0,0], nbelow)) 

353 break 

354 

355 if 'w' in mode: 

356 # analyse EOD waveform of all wavefish: 

357 powers = np.array([np.sum(fish[:,1]) for fish in wave_eodfs]) 

358 power_indices = np.argsort(-powers) 

359 wave_indices = np.zeros(len(wave_eodfs), dtype=int) - 3 

360 for k, idx in enumerate(power_indices): 

361 fish = wave_eodfs[idx] 

362 """ 

363 eod_times = np.arange(0.0, len(data)/rate, 1.0/fish[0,0]) 

364 mean_eod, eod_times = \ 

365 eod_waveform(data, rate, eod_times, win_fac=3.0, min_win=0.0, 

366 min_sem=(k==0), **eod_waveform_args(cfg)) 

367 """ 

368 mean_eod, eod_times = \ 

369 waveeod_waveform(data, rate, fish[0, 0], win_fac=3.0, 

370 unfilter_cutoff=cfg.value('unfilterCutoff')) 

371 if len(mean_eod) == 0: 

372 continue 

373 mean_eod, props, sdata, error_str = \ 

374 analyze_wave(mean_eod, fish, **analyze_wave_args(cfg)) 

375 if error_str: 

376 print(name + ': ' + error_str) 

377 clipped_frac = clipped_fraction(data, rate, eod_times, 

378 mean_eod, min_clip, max_clip) 

379 props['n'] = len(eod_times) 

380 props['index'] = len(eod_props) 

381 props['clipped'] = clipped_frac 

382 props['samplerate'] = rate 

383 props['nfft'] = nfft 

384 props['dfreq'] = dfreq 

385 # remove wave fish that are smaller than the largest pulse fish: 

386 if props['p-p-amplitude'] < 0.01*max_pulse_amplitude: 

387 rm_indices = power_indices[k:] 

388 if verbose > 0: 

389 print('skip %6.1fHz wave fish: power=%5.1fdB, p-p amplitude=%5.1fdB smaller than pulse fish=%5.1dB - 20dB' % 

390 (props['EODf'], decibel(powers[idx]), 

391 decibel(props['p-p-amplitude']), decibel(max_pulse_amplitude))) 

392 for idx in rm_indices[1:]: 

393 print('skip %6.1fHz wave fish: power=%5.1fdB even smaller' % 

394 (wave_eodfs[idx][0,0], decibel(powers[idx]))) 

395 wave_eodfs = [eodfs for idx, eodfs in enumerate(wave_eodfs) 

396 if idx not in rm_indices] 

397 wave_indices = np.array([idcs for idx, idcs in enumerate(wave_indices) 

398 if idx not in rm_indices], dtype=int) 

399 break 

400 # add good waveforms only: 

401 remove, skips, msg = wave_quality(props, sdata[1:,3], **wave_quality_args(cfg)) 

402 if len(skips) == 0: 

403 wave_indices[idx] = props['index'] 

404 eod_props.append(props) 

405 mean_eods.append(mean_eod) 

406 spec_data.append(sdata) 

407 peak_data.append([]) 

408 if verbose > 0: 

409 print('take %6.1fHz wave fish: %s' % (props['EODf'], msg)) 

410 else: 

411 wave_indices[idx] = -2 if remove else -1 

412 skip_reason += ['%.1fHz wave fish %s' % (props['EODf'], skips)] 

413 if verbose > 0: 

414 print('%-6s %6.1fHz wave fish: %s (%s)' % 

415 ('remove' if remove else 'skip', props['EODf'], skips, msg)) 

416 wave_eodfs = [eodfs for idx, eodfs in zip(wave_indices, wave_eodfs) if idx > -2] 

417 wave_indices = np.array([idx for idx in wave_indices if idx > -2], dtype=int) 

418 return (psd_data, wave_eodfs, wave_indices, eod_props, mean_eods, 

419 spec_data, peak_data, power_thresh, skip_reason, zoom_window) 

420 

421 

422def remove_eod_files(output_basename, verbose, cfg): 

423 """Remove all files from previous runs of thunderfish 

424 """ 

425 ff = cfg.value('fileFormat') 

426 if ff == 'py': 

427 fext = 'py' 

428 else: 

429 fext = TableData.extensions[ff] 

430 # remove all files from previous runs of thunderfish: 

431 for fn in glob.glob('%s*.%s' % (output_basename, fext)): 

432 os.remove(fn) 

433 if verbose > 0: 

434 print('removed file %s' % fn) 

435 

436 

437def plot_style(): 

438 """Set style of plots. 

439 """ 

440 plt.rcParams['figure.facecolor'] = 'white' 

441 plt.rcParams['axes.facecolor'] = 'none' 

442 plt.rcParams['xtick.direction'] = 'out' 

443 plt.rcParams['ytick.direction'] = 'out' 

444 

445 

446def axes_style(ax): 

447 """Fix style of axes. 

448 

449 Parameters 

450 ---------- 

451 ax: matplotlib axes 

452 """ 

453 ax.spines['top'].set_visible(False) 

454 ax.spines['right'].set_visible(False) 

455 ax.get_xaxis().tick_bottom() 

456 ax.get_yaxis().tick_left() 

457 

458 

459def plot_eods(base_name, message_filename, 

460 raw_data, rate, channel, idx0, idx1, clipped, 

461 psd_data, wave_eodfs, wave_indices, mean_eods, eod_props, 

462 peak_data, spec_data, indices, unit, zoom_window, 

463 n_snippets=10, power_thresh=None, label_power=True, 

464 all_eods=False, spec_plots='auto', skip_bad=True, 

465 log_freq=False, min_freq=0.0, max_freq=3000.0, 

466 interactive=True, verbose=0): 

467 """Creates an output plot for the thunderfish program. 

468 

469 This output contains the raw trace where the analysis window is 

470 marked, the power-spectrum of this analysis window where the 

471 detected fish are marked, plots of averaged EOD plots, and 

472 spectra of the EOD waveforms. 

473 

474 Parameters 

475 ---------- 

476 base_name: string 

477 Basename of audio_file. 

478 message_filename: string or None 

479 Path to meta-data message. 

480 raw_data: array 

481 Dataset. 

482 rate: float 

483 Sampling rate of the dataset. 

484 channel: int or None 

485 Channel of the recording to be put into the plot title. 

486 If None, do not write the channel into the title. 

487 idx0: float 

488 Index of the beginning of the analysis window in the dataset. 

489 idx1: float 

490 Index of the end of the analysis window in the dataset. 

491 clipped: float 

492 Fraction of clipped amplitudes. 

493 psd_data: 2D array 

494 Power spectrum (frequencies and power) of the analysed data. 

495 wave_eodfs: array 

496 Frequency and power of fundamental frequency/harmonics of several fish. 

497 wave_indices: array of int 

498 Indices of wave fish mapping from wave_eodfs to eod_props. 

499 If negative, then that EOD frequency has no waveform described in eod_props. 

500 mean_eods: list of 2-D arrays with time, mean and std. 

501 Mean trace for the mean EOD plot. 

502 eod_props: list of dict 

503 Properties for each waveform in mean_eods. 

504 peak_data: list of 2_D arrays 

505 For each pulsefish a list of peak properties 

506 (index, time, and amplitude). 

507 spec_data: list of 2_D arrays 

508 For each pulsefish a power spectrum of the single pulse and for 

509 each wavefish the relative amplitudes and phases of the harmonics. 

510 indices: list of int or None 

511 Indices of the fish in eod_props to be plotted. 

512 If None try to plot all. 

513 unit: string 

514 Unit of the trace and the mean EOD. 

515 n_snippets: int 

516 Number of EOD waveform snippets to be plotted. If zero do not plot any. 

517 power_thresh: 2 D array or None 

518 Frequency (first column) and power (second column) of threshold 

519 derived from single pulse spectra to discard false wave fish. 

520 label_power: boolean 

521 If `True` put the power in decibel in addition to the frequency 

522 into the legend. 

523 all_eods: bool 

524 Plot all EOD waveforms. 

525 spec_plots: bool or 'auto' 

526 Plot amplitude spectra of EOD waveforms. 

527 If 'auto', plot them if there is a singel waveform only. 

528 skip_bad: bool 

529 Skip harmonic groups without index (entry in indices is negative). 

530 log_freq: boolean 

531 Logarithmic (True) or linear (False) frequency axis of power spectrum of recording. 

532 min_freq: float 

533 Limits of frequency axis of power spectrum of recording 

534 are set to `(min_freq, max_freq)` if `max_freq` is greater than zero 

535 max_freq: float 

536 Limits of frequency axis of power spectrum of recording 

537 are set to `(min_freq, max_freq)` and limits of power axis are computed 

538 from powers below max_freq if `max_freq` is greater than zero 

539 interactive: bool 

540 If True install some keyboard interaction. 

541 verbose: int 

542 Print out information about data to be plotted if greater than zero. 

543 

544 Returns 

545 ------- 

546 fig: plt.figure 

547 Figure with the plots. 

548 """ 

549 

550 def keypress(event): 

551 if event.key in 'pP': 

552 if idx1 > idx0: 

553 playdata = 1.0 * raw_data[idx0:idx1] 

554 else: 

555 playdata = 1.0 * raw_data[:] 

556 fade(playdata, rate, 0.1) 

557 play(playdata, rate, blocking=False) 

558 if event.key in 'mM' and message_filename: 

559 # play voice message: 

560 msg, msg_rate = load_audio(message_filename) 

561 play(msg, msg_rate, blocking=False) 

562 

563 def recording_format_coord(x, y): 

564 return 'full recording: x=%.3f s, y=%.3f' % (x, y) 

565 

566 def recordingzoom_format_coord(x, y): 

567 return 'recording zoom-in: x=%.3f s, y=%.3f' % (x, y) 

568 

569 def psd_format_coord(x, y): 

570 return 'power spectrum: x=%.1f Hz, y=%.1f dB' % (x, y) 

571 

572 def meaneod_format_coord(x, y): 

573 return 'mean EOD waveform: x=%.2f ms, y=%.3f' % (x, y) 

574 

575 def ampl_format_coord(x, y): 

576 return u'amplitude spectrum: x=%.0f, y=%.2f' % (x, y) 

577 

578 def phase_format_coord(x, y): 

579 return u'phase spectrum: x=%.0f, y=%.2f \u03c0' % (x, y/np.pi) 

580 

581 def pulsepsd_format_coord(x, y): 

582 return 'single pulse power spectrum: x=%.1f Hz, y=%.1f dB' % (x, y) 

583 

584 # count number of fish types to be plotted: 

585 if indices is None: 

586 indices = np.arange(len(eod_props)) 

587 else: 

588 indices = np.array(indices, dtype=int) 

589 nwave = 0 

590 npulse = 0 

591 for idx in indices: 

592 if eod_props[idx]['type'] == 'pulse': 

593 npulse += 1 

594 elif eod_props[idx]['type'] == 'wave': 

595 nwave += 1 

596 neods = nwave + npulse 

597 

598 if verbose > 0: 

599 print('plot: %2d waveforms: %2d wave fish, %2d pulse fish and %2d EOD frequencies.' 

600 % (len(indices), nwave, npulse, len(wave_eodfs))) 

601 

602 # size and positions: 

603 if spec_plots == 'auto': 

604 spec_plots = len(indices) == 1 

605 large_plots = spec_plots or len(indices) <= 2 

606 width = 14.0 

607 height = 10.0 

608 if all_eods and len(indices) > 0: 

609 nrows = len(indices) if spec_plots else (len(indices)+1)//2 

610 if large_plots: 

611 height = 6.0 + 4.0*nrows 

612 else: 

613 height = 6.4 + 1.9*nrows 

614 leftx = 1.0/width 

615 midx = 0.5 + leftx 

616 fullwidth = 1.0-1.4/width 

617 halfwidth = 0.5-1.4/width 

618 pheight = 3.0/height 

619 

620 # figure: 

621 plot_style() 

622 fig = plt.figure(figsize=(width, height)) 

623 if interactive: 

624 fig.canvas.mpl_connect('key_press_event', keypress) 

625 

626 # plot title: 

627 title = base_name 

628 if channel is not None: 

629 title += ' c%d' % channel 

630 ax = fig.add_axes([0.2/width, 1.0-0.6/height, 1.0-0.4/width, 0.55/height]) 

631 ax.text(0.0, 1.0, title, fontsize=22, va='top') 

632 ax.text(1.0, 1.0, 'thunderfish by Benda-Lab', fontsize=16, ha='right', va='top') 

633 ax.text(1.0, 0.0, 'version %s' % __version__, fontsize=16, ha='right', va='bottom') 

634 ax.set_frame_on(False) 

635 ax.set_axis_off() 

636 ax.set_navigate(False) 

637 

638 # layout of recording and psd plots: 

639 #force_both = True # set to True for debugging pulse and wave detection 

640 force_both = False 

641 posy = 1.0 - 4.0/height 

642 axr = None 

643 axp = None 

644 legend_inside = True 

645 legendwidth = 2.2/width if label_power else 1.7/width 

646 if neods == 0: 

647 axr = fig.add_axes([leftx, posy, fullwidth, pheight]) # top, wide 

648 if len(psd_data) > 0: 

649 axp = fig.add_axes([leftx, 2.0/height, fullwidth, pheight]) # bottom, wide 

650 else: 

651 if npulse == 0 and nwave > 2 and psd_data is not None and \ 

652 len(psd_data) > 0 and not force_both: 

653 axp = fig.add_axes([leftx, posy, fullwidth-legendwidth, pheight]) # top, wide 

654 legend_inside = False 

655 elif (npulse > 0 or psd_data is None or len(psd_data) == 0) \ 

656 and len(wave_eodfs) == 0 and not force_both: 

657 axr = fig.add_axes([leftx, posy, fullwidth, pheight]) # top, wide 

658 else: 

659 axr = fig.add_axes([leftx, posy, halfwidth, pheight]) # top left 

660 label_power = False 

661 legendwidth = 2.2/width 

662 axp = fig.add_axes([midx, posy, halfwidth, pheight]) # top, right 

663 

664 # best window data: 

665 data = raw_data[idx0:idx1] if idx1 > idx0 else raw_data 

666 

667 # plot recording 

668 pulse_colors, pulse_markers = colors_markers() 

669 pulse_colors = pulse_colors[3:] 

670 pulse_markers = pulse_markers[3:] 

671 if axr is not None: 

672 axes_style(axr) 

673 twidth = 0.1 

674 if len(indices) > 0: 

675 if eod_props[indices[0]]['type'] == 'wave': 

676 twidth = 5.0/eod_props[indices[0]]['EODf'] 

677 else: 

678 if len(wave_eodfs) > 0: 

679 twidth = 3.0/eod_props[indices[0]]['EODf'] 

680 else: 

681 twidth = 10.0/eod_props[indices[0]]['EODf'] 

682 twidth = (1+twidth//0.005)*0.005 

683 if data is not None and len(data) > 0: 

684 plot_eod_recording(axr, data, rate, unit, twidth, 

685 idx0/rate, trace_style) 

686 plot_pulse_eods(axr, data, rate, 

687 zoom_window, twidth, eod_props, 

688 idx0/rate, colors=pulse_colors, 

689 markers=pulse_markers, frameon=True, 

690 loc='upper right') 

691 if axr.get_legend() is not None: 

692 axr.get_legend().get_frame().set_color('white') 

693 axr.set_title('Recording', fontsize=14, y=1.05) 

694 axr.format_coord = recordingzoom_format_coord 

695 

696 # plot psd 

697 wave_colors, wave_markers = colors_markers() 

698 if axp is not None: 

699 axes_style(axp) 

700 if power_thresh is not None: 

701 axp.plot(power_thresh[:,0], decibel(power_thresh[:,1]), '#CCCCCC', lw=1) 

702 if len(wave_eodfs) > 0: 

703 kwargs = {} 

704 if len(wave_eodfs) > 1: 

705 title = '%d EOD frequencies' % len(wave_eodfs) 

706 kwargs = {'title': title if len(wave_eodfs) > 2 else None } 

707 if legend_inside: 

708 kwargs.update({'bbox_to_anchor': (1.05, 1.1), 

709 'loc': 'upper right', 'legend_rows': 10, 

710 'frameon': True}) 

711 else: 

712 kwargs.update({'bbox_to_anchor': (1.02, 1.1), 

713 'loc': 'upper left', 'legend_rows': 14, 

714 'labelspacing': 0.6, 'frameon': False}) 

715 plot_harmonic_groups(axp, wave_eodfs, wave_indices, max_groups=0, 

716 skip_bad=skip_bad, 

717 sort_by_freq=True, label_power=label_power, 

718 colors=wave_colors, markers=wave_markers, 

719 **kwargs) 

720 if legend_inside: 

721 axp.get_legend().get_frame().set_color('white') 

722 if psd_data is not None and len(psd_data) > 0: 

723 plot_decibel_psd(axp, psd_data[:,0], psd_data[:,1], 

724 log_freq=log_freq, min_freq=min_freq, 

725 max_freq=max_freq, ymarg=5.0, 

726 sstyle=spectrum_style) 

727 axp.yaxis.set_major_locator(ticker.MaxNLocator(6)) 

728 if len(wave_eodfs) == 1: 

729 axp.get_legend().set_visible(False) 

730 label = '%6.1f Hz' % wave_eodfs[0][0, 0] 

731 axp.set_title('Powerspectrum: %s' % label, y=1.05, fontsize=14) 

732 else: 

733 axp.set_title('Powerspectrum', y=1.05, fontsize=14) 

734 axp.format_coord = psd_format_coord 

735 

736 # get fish labels from legends: 

737 if axp is not None: 

738 w, _ = axp.get_legend_handles_labels() 

739 eodf_labels = [wi.get_label().split()[0] for wi in w] 

740 legend_wave_eodfs = np.array([float(f) if f[0] != '(' else np.nan for f in eodf_labels]) 

741 if axr is not None: 

742 p, _ = axr.get_legend_handles_labels() 

743 eodf_labels = [pi.get_label().split()[0] for pi in p] 

744 legend_pulse_eodfs = np.array([float(f) if f[0] != '(' else np.nan for f in eodf_labels]) 

745 

746 # layout: 

747 sheight = 1.4/height 

748 sstep = 1.6/height 

749 max_plots = len(indices) 

750 if not all_eods: 

751 if large_plots: 

752 max_plots = 1 if spec_plots else 2 

753 else: 

754 max_plots = 4 

755 if large_plots: 

756 pstep = pheight + 1.0/height 

757 ty = 1.08 

758 my = 1.10 

759 ny = 6 

760 else: 

761 posy -= 0.2/height 

762 pheight = 1.3/height 

763 pstep = 1.9/height 

764 ty = 1.10 

765 my = 1.16 

766 ny = 4 

767 posy -= pstep 

768 

769 # sort indices by p-p amplitude: 

770 pp_ampls = [eod_props[idx]['p-p-amplitude'] for idx in indices] 

771 pp_indices = np.argsort(pp_ampls)[::-1] 

772 

773 # plot EOD waveform and spectra: 

774 for k, idx in enumerate(indices[pp_indices]): 

775 if k >= max_plots: 

776 break 

777 # plot EOD waveform: 

778 mean_eod = mean_eods[idx] 

779 props = eod_props[idx] 

780 peaks = peak_data[idx] 

781 lx = leftx if spec_plots or k%2 == 0 else midx 

782 ax = fig.add_axes([lx, posy, halfwidth, pheight]) 

783 axes_style(ax) 

784 ax.yaxis.set_major_locator(ticker.MaxNLocator(ny)) 

785 if len(indices) > 1: 

786 ax.text(0.3, ty, '{EODf:.1f} Hz {type} fish'.format(**props), 

787 transform=ax.transAxes, fontsize=14, zorder=20) 

788 mx = 0.25 

789 else: 

790 ax.text(-0.1, ty, '{EODf:.1f} Hz {type} fish'.format(**props), 

791 transform=ax.transAxes, fontsize=14, zorder=20) 

792 ax.text(0.5, ty, 'Averaged EOD', ha='center', 

793 transform=ax.transAxes, fontsize=14, zorder=20) 

794 mx = -0.14 

795 eodf = props['EODf'] 

796 if props['type'] == 'wave': 

797 if axp is not None: 

798 wk = np.nanargmin(np.abs(legend_wave_eodfs - eodf)) 

799 ma = ml.Line2D([mx], [my], color=w[wk].get_color(), marker=w[wk].get_marker(), 

800 markersize=w[wk].get_markersize(), mec='none', clip_on=False, 

801 label=w[wk].get_label(), transform=ax.transAxes) 

802 ax.add_line(ma) 

803 else: 

804 if axr is not None and len(legend_pulse_eodfs) > 0: 

805 pk = np.argmin(np.abs(legend_pulse_eodfs - eodf)) 

806 ma = ml.Line2D([mx], [my], color=p[pk].get_color(), marker=p[pk].get_marker(), 

807 markersize=p[pk].get_markersize(), mec='none', clip_on=False, 

808 label=p[pk].get_label(), transform=ax.transAxes) 

809 ax.add_line(ma) 

810 plot_eod_waveform(ax, mean_eod, props, peaks, unit, **eod_styles) 

811 if props['type'] == 'pulse' and 'times' in props: 

812 plot_eod_snippets(ax, data, rate, mean_eod[0,0], mean_eod[-1,0], 

813 props['times'], n_snippets, props['flipped'], 

814 snippet_style) 

815 if not large_plots and k < max_plots-2: 

816 ax.set_xlabel('') 

817 ax.format_coord = meaneod_format_coord 

818 

819 # plot spectra: 

820 if spec_plots: 

821 spec = spec_data[idx] 

822 if props['type'] == 'pulse': 

823 ax = fig.add_axes([midx, posy, halfwidth, pheight]) 

824 axes_style(ax) 

825 plot_pulse_spectrum(ax, spec, props, **pulse_spec_styles) 

826 ax.set_title('Single pulse spectrum', fontsize=14, y=1.05) 

827 ax.format_coord = pulsepsd_format_coord 

828 else: 

829 axa = fig.add_axes([midx, posy+sstep, halfwidth, sheight]) 

830 axes_style(axa) 

831 axp = fig.add_axes([midx, posy, halfwidth, sheight]) 

832 axes_style(axp) 

833 plot_wave_spectrum(axa, axp, spec, props, unit, 

834 **wave_spec_styles) 

835 axa.set_title('Amplitude and phase spectrum', fontsize=14, y=1.05) 

836 axa.set_xticklabels([]) 

837 axa.yaxis.set_major_locator(ticker.MaxNLocator(4)) 

838 axa.format_coord = ampl_format_coord 

839 axp.format_coord = phase_format_coord 

840 

841 if spec_plots or k%2 == 1: 

842 posy -= pstep 

843 

844 # whole trace: 

845 ax = fig.add_axes([leftx, 0.6/height, fullwidth, 0.9/height]) 

846 axes_style(ax) 

847 if raw_data is not None and len(raw_data) > 0: 

848 plot_data_window(ax, raw_data, rate, unit, idx0, idx1, clipped, 

849 **data_styles) 

850 ax.format_coord = recording_format_coord 

851 

852 return fig 

853 

854 

855def plot_eod_subplots(base_name, subplots, raw_data, rate, idx0, idx1, 

856 clipped, psd_data, wave_eodfs, wave_indices, mean_eods, 

857 eod_props, peak_data, spec_data, unit, zoom_window, 

858 n_snippets=10, power_thresh=None, label_power=True, 

859 skip_bad=True, log_freq=False, 

860 min_freq=0.0, max_freq=3000.0, save=True): 

861 """Plot time traces and spectra into separate windows or files. 

862 

863 Parameters 

864 ---------- 

865 base_name: string 

866 Basename of audio_file. 

867 subplots: string 

868 Specifies which subplots to plot: 

869 r) recording with best window, t) data trace with detected pulse fish, 

870 p) power spectrum with detected wave fish, w/W) mean EOD waveform, 

871 s/S) EOD spectrum, e/E) EOD waveform and spectra. With capital letters 

872 all fish are saved into a single pdf file, with small letters each fish 

873 is saved into a separate file. 

874 raw_data: array 

875 Dataset. 

876 rate: float 

877 Sampling rate of the dataset. 

878 idx0: float 

879 Index of the beginning of the analysis window in the dataset. 

880 idx1: float 

881 Index of the end of the analysis window in the dataset. 

882 clipped: float 

883 Fraction of clipped amplitudes. 

884 psd_data: 2D array 

885 Power spectrum (frequencies and power) of the analysed data. 

886 wave_eodfs: array 

887 Frequency and power of fundamental frequency/harmonics of several fish. 

888 wave_indices: array of int 

889 Indices of wave fish mapping from wave_eodfs to eod_props. 

890 If negative, then that EOD frequency has no waveform described in eod_props. 

891 mean_eods: list of 2-D arrays with time, mean and std. 

892 Mean trace for the mean EOD plot. 

893 eod_props: list of dict 

894 Properties for each waveform in mean_eods. 

895 peak_data: list of 2_D arrays 

896 For each pulsefish a list of peak properties 

897 (index, time, and amplitude). 

898 spec_data: list of 2_D arrays 

899 For each pulsefish a power spectrum of the single pulse and for 

900 each wavefish the relative amplitudes and phases of the harmonics. 

901 unit: string 

902 Unit of the trace and the mean EOD. 

903 n_snippets: int 

904 Number of EOD waveform snippets to be plotted. If zero do not plot any. 

905 power_thresh: 2 D array or None 

906 Frequency (first column) and power (second column) of threshold 

907 derived from single pulse spectra to discard false wave fish. 

908 label_power: boolean 

909 If `True` put the power in decibel in addition to the frequency 

910 into the legend. 

911 skip_bad: bool 

912 Skip harmonic groups without index (entry in indices is negative). 

913 log_freq: boolean 

914 Logarithmic (True) or linear (False) frequency axis of power spectrum of recording. 

915 min_freq: float 

916 Limits of frequency axis of power spectrum of recording 

917 are set to `(min_freq, max_freq)` if `max_freq` is greater than zero 

918 max_freq: float 

919 Limits of frequency axis of power spectrum of recording 

920 are set to `(min_freq, max_freq)` and limits of power axis are computed 

921 from powers below max_freq if `max_freq` is greater than zero 

922 save: bool 

923 If True save plots to files instead of showing them. 

924 """ 

925 plot_style() 

926 if 'r' in subplots: 

927 fig, ax = plt.subplots(figsize=(10, 2)) 

928 fig.subplots_adjust(left=0.07, right=0.99, bottom=0.22, top=0.95) 

929 plot_data_window(ax, raw_data, rate, unit, idx0, idx1, clipped, 

930 **data_styles) 

931 ax.yaxis.set_major_locator(ticker.MaxNLocator(5)) 

932 axes_style(ax) 

933 if save: 

934 fig.savefig(base_name + '-recording.pdf') 

935 if 't' in subplots: 

936 fig, ax = plt.subplots(figsize=(10, 6)) 

937 twidth = 0.1 

938 if len(eod_props) > 0: 

939 if eod_props[0]['type'] == 'wave': 

940 twidth = 5.0/eod_props[0]['EODf'] 

941 else: 

942 if len(wave_eodfs) > 0: 

943 twidth = 3.0/eod_props[0]['EODf'] 

944 else: 

945 twidth = 10.0/eod_props[0]['EODf'] 

946 twidth = (1+twidth//0.005)*0.005 

947 pulse_colors, pulse_markers = colors_markers() 

948 pulse_colors = pulse_colors[3:] 

949 pulse_markers = pulse_markers[3:] 

950 plot_eod_recording(ax, raw_data[idx0:idx1], rate, unit, 

951 twidth, idx0/rate, trace_style) 

952 plot_pulse_eods(ax, raw_data[idx0:idx1], rate, zoom_window, 

953 twidth, eod_props, idx0/rate, 

954 colors=pulse_colors, markers=pulse_markers, 

955 frameon=True, loc='upper right') 

956 if ax.get_legend() is not None: 

957 ax.get_legend().get_frame().set_color('white') 

958 axes_style(ax) 

959 if save: 

960 fig.savefig(base_name + '-trace.pdf') 

961 if 'p' in subplots: 

962 fig, ax = plt.subplots(figsize=(10, 5)) 

963 fig.subplots_adjust(left=0.08, right=0.975, bottom=0.11, top=0.9) 

964 axes_style(ax) 

965 if power_thresh is not None: 

966 ax.plot(power_thresh[:,0], decibel(power_thresh[:,1]), '#CCCCCC', lw=1) 

967 if len(wave_eodfs) > 0: 

968 kwargs = {} 

969 if len(wave_eodfs) > 1: 

970 title = '%d EOD frequencies' % len(wave_eodfs) 

971 kwargs = {'title': title if len(wave_eodfs) > 2 else None } 

972 if len(wave_eodfs) > 2: 

973 fig.subplots_adjust(left=0.08, right=0.78, bottom=0.11, top=0.9) 

974 kwargs.update({'bbox_to_anchor': (1.01, 1.1), 

975 'loc': 'upper left', 'legend_rows': 14, 

976 'labelspacing': 0.6}) 

977 else: 

978 kwargs.update({'bbox_to_anchor': (1.05, 1.1), 

979 'loc': 'upper right', 'legend_rows': 10}) 

980 wave_colors, wave_markers = colors_markers() 

981 plot_harmonic_groups(ax, wave_eodfs, wave_indices, max_groups=0, 

982 skip_bad=skip_bad, 

983 sort_by_freq=True, label_power=label_power, 

984 colors=wave_colors, markers=wave_markers, 

985 frameon=False, **kwargs) 

986 plot_decibel_psd(ax, psd_data[:,0], psd_data[:,1], log_freq=log_freq, 

987 min_freq=min_freq, max_freq=max_freq, ymarg=5.0, 

988 sstyle=spectrum_style) 

989 ax.yaxis.set_major_locator(ticker.MaxNLocator(6)) 

990 if len(wave_eodfs) == 1: 

991 ax.get_legend().set_visible(False) 

992 label = '%6.1f Hz' % wave_eodfs[0][0, 0] 

993 ax.set_title('Powerspectrum: %s' % label, y=1.05) 

994 else: 

995 ax.set_title('Powerspectrum', y=1.05) 

996 if save: 

997 fig.savefig(base_name + '-psd.pdf') 

998 if 'w' in subplots or 'W' in subplots: 

999 mpdf = None 

1000 if 'W' in subplots: 

1001 mpdf = PdfPages(base_name + '-waveforms.pdf') 

1002 for meod, props, peaks in zip(mean_eods, eod_props, peak_data): 

1003 if meod is None: 

1004 continue 

1005 fig, ax = plt.subplots(figsize=(5, 3)) 

1006 fig.subplots_adjust(left=0.18, right=0.98, bottom=0.15, top=0.9) 

1007 if not props is None: 

1008 ax.set_title('{index:d}: {EODf:.1f} Hz {type} fish'.format(**props)) 

1009 plot_eod_waveform(ax, meod, props, peaks, unit, **eod_styles) 

1010 data = raw_data[idx0:idx1] if idx1 > idx0 else raw_data 

1011 if not props is None and props['type'] == 'pulse' and \ 

1012 'times' in props: 

1013 plot_eod_snippets(ax, data, rate, meod[0,0], 

1014 meod[-1,0], props['times'], 

1015 n_snippets, False, snippet_style) 

1016 ax.yaxis.set_major_locator(ticker.MaxNLocator(6)) 

1017 axes_style(ax) 

1018 if mpdf is None: 

1019 if save: 

1020 fig.savefig(base_name + '-waveform-%d.pdf' % props['index']) 

1021 else: 

1022 mpdf.savefig(fig) 

1023 if mpdf is not None: 

1024 mpdf.close() 

1025 if 's' in subplots or 'S' in subplots: 

1026 mpdf = None 

1027 if 'S' in subplots: 

1028 mpdf = PdfPages(base_name + '-spectrum.pdf') 

1029 for props, peaks, spec in zip(eod_props, peak_data, spec_data): 

1030 if spec is None: 

1031 continue 

1032 if props is not None and props['type'] == 'pulse': 

1033 fig, ax = plt.subplots(figsize=(5, 3.5)) 

1034 fig.subplots_adjust(left=0.15, right=0.967, bottom=0.16, top=0.88) 

1035 axes_style(ax) 

1036 ax.set_title('{index:d}: {EODf:.1f} Hz {type} fish'.format(**props), y=1.07) 

1037 plot_pulse_spectrum(ax, spec, props, **pulse_spec_styles) 

1038 else: 

1039 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(5, 3.5)) 

1040 fig.subplots_adjust(left=0.15, right=0.97, bottom=0.16, top=0.88, hspace=0.4) 

1041 axes_style(ax1) 

1042 axes_style(ax2) 

1043 if not props is None: 

1044 ax1.set_title('{index:d}: {EODf:.1f} Hz {type} fish'.format(**props), y=1.15) 

1045 plot_wave_spectrum(ax1, ax2, spec, props, unit, 

1046 **wave_spec_styles) 

1047 ax1.set_xticklabels([]) 

1048 ax1.yaxis.set_major_locator(ticker.MaxNLocator(4)) 

1049 if mpdf is None: 

1050 if save: 

1051 fig.savefig(base_name + '-spectrum-%d.pdf' % props['index']) 

1052 else: 

1053 mpdf.savefig(fig) 

1054 if mpdf is not None: 

1055 mpdf.close() 

1056 if 'e' in subplots or 'E' in subplots: 

1057 mpdf = None 

1058 if 'E' in subplots: 

1059 mpdf = PdfPages(base_name + '-eods.pdf') 

1060 for meod, props, peaks, spec in zip(mean_eods, eod_props, peak_data, spec_data): 

1061 if meod is None or spec is None: 

1062 continue 

1063 fig = plt.figure(figsize=(10, 3.5)) 

1064 gs = gridspec.GridSpec(nrows=2, ncols=2, left=0.09, right=0.98, 

1065 bottom=0.16, top=0.88, wspace=0.4, hspace=0.4) 

1066 ax1 = fig.add_subplot(gs[:,0]) 

1067 if not props is None: 

1068 ax1.set_title('{index:d}: {EODf:.1f} Hz {type} fish'.format(**props), y=1.07) 

1069 plot_eod_waveform(ax1, meod, props, peaks, unit, **eod_styles) 

1070 data = raw_data[idx0:idx1] if idx1 > idx0 else raw_data 

1071 if not props is None and props['type'] == 'pulse' and 'times' in props: 

1072 plot_eod_snippets(ax1, data, rate, meod[0,0], 

1073 meod[-1,0], props['times'], 

1074 n_snippets, False, snippet_style) 

1075 ax1.yaxis.set_major_locator(ticker.MaxNLocator(6)) 

1076 axes_style(ax1) 

1077 if not props is None and props['type'] == 'pulse': 

1078 ax2 = fig.add_subplot(gs[:,1]) 

1079 axes_style(ax2) 

1080 plot_pulse_spectrum(ax2, spec, props, **pulse_spec_styles) 

1081 ax2.set_title('Single pulse spectrum', y=1.07) 

1082 else: 

1083 ax2 = fig.add_subplot(gs[0,1]) 

1084 ax3 = fig.add_subplot(gs[1,1]) 

1085 axes_style(ax2) 

1086 axes_style(ax3) 

1087 plot_wave_spectrum(ax2, ax3, spec, props, unit, 

1088 **wave_spec_styles) 

1089 ax2.set_title('Amplitude and phase spectrum', y=1.15) 

1090 ax2.set_xticklabels([]) 

1091 ax2.yaxis.set_major_locator(ticker.MaxNLocator(4)) 

1092 if mpdf is None: 

1093 if save: 

1094 fig.savefig(base_name + '-eod-%d.pdf' % props['index']) 

1095 else: 

1096 mpdf.savefig(fig) 

1097 if mpdf is not None: 

1098 mpdf.close() 

1099 if not save: 

1100 plt.show() 

1101 plt.close('all') 

1102 

1103 

1104def thunderfish_plot(files, data_path=None, load_kwargs={}, 

1105 all_eods=False, spec_plots='auto', skip_bad=True, 

1106 save_plot=False, multi_pdf=None, 

1107 save_subplots='', log_freq=False, min_freq=0.0, 

1108 max_freq=3000.0, output_folder='.', 

1109 keep_path=False, verbose=0): 

1110 """Generate plots from saved analysis results. 

1111 

1112 Parameters 

1113 ---------- 

1114 files: list of str 

1115 Analysis files from a single recording. 

1116 data_path: str 

1117 Path where to find the raw data. 

1118 load_kwargs: dict 

1119 Key-word arguments for the `load_data()` function. 

1120 all_eods: bool 

1121 If True, plot all EOD waveforms. 

1122 spec_plots: bool or 'auto' 

1123 Plot amplitude spectra of EOD waveforms. 

1124 If 'auto', plot them if there is a singel waveform only. 

1125 skip_bad: bool 

1126 Skip harmonic groups without index in the spectrum plot. 

1127 save_plot: bool 

1128 If True, save plots as pdf file. 

1129 multi_pdf: matplotlib.PdfPages or None 

1130 PdfPages instance in which to save plots. 

1131 save_subplots: string 

1132 If not empty, specifies subplots to be saved as separate pdf 

1133 files: r) recording with best window, t) data trace with 

1134 detected pulse fish, p) power spectrum with detected wave 

1135 fish, w/W) mean EOD waveform, s/S) EOD spectrum, e/E) EOD 

1136 waveform and spectra. Capital letters produce a single 

1137 multipage pdf containing plots of all detected fish. 

1138 log_freq: boolean 

1139 Logarithmic (True) or linear (False) frequency axis of 

1140 power spectrum of recording. 

1141 min_freq: float 

1142 Limits of frequency axis of power spectrum of recording 

1143 are set to `(min_freq, max_freq)`, if `max_freq` is greater than zero 

1144 max_freq: float 

1145 Limits of frequency axis of power spectrum of recording 

1146 are set to `(min_freq, max_freq)` and limits of power axis are computed 

1147 from powers below max_freq, if `max_freq` is greater than zero 

1148 output_folder: string 

1149 Folder where to save results. 

1150 keep_path: bool 

1151 Add relative path of data files to output path. 

1152 verbose: int 

1153 Verbosity level (for debugging). 

1154 """ 

1155 if len(save_subplots) == 0: 

1156 save_subplots = 'rtpwsed' # plot everything 

1157 # load analysis results: 

1158 mean_eods, wave_eodfs, wave_indices, eod_props, spec_data, \ 

1159 peak_data, base_name, channel, unit = load_analysis(files) 

1160 if len(mean_eods) == 0 or all(me is None for me in mean_eods): 

1161 save_subplots = save_subplots.replace('w', '') 

1162 save_subplots = save_subplots.replace('W', '') 

1163 save_subplots = save_subplots.replace('e', '') 

1164 save_subplots = save_subplots.replace('E', '') 

1165 save_subplots = save_subplots.replace('d', '') 

1166 if len(spec_data) == 0 or all(sd is None for sd in spec_data): 

1167 save_subplots = save_subplots.replace('s', '') 

1168 save_subplots = save_subplots.replace('S', '') 

1169 save_subplots = save_subplots.replace('e', '') 

1170 save_subplots = save_subplots.replace('E', '') 

1171 save_subplots = save_subplots.replace('d', '') 

1172 clipped = 0.0 

1173 if len(eod_props) > 0 and not eod_props[0] is None and \ 

1174 'winclipped' in eod_props[0]: 

1175 clipped = eod_props[0]['winclipped'] 

1176 zoom_window = [1.2, 1.3] 

1177 # load recording: 

1178 psd_data = None 

1179 if base_name: 

1180 name = os.path.basename(base_name) if data_path and data_path != '.' else base_name 

1181 data_path = os.path.join(data_path, name) 

1182 data, rate, idx0, idx1, data_path = \ 

1183 load_recording(data_path, channel, load_kwargs, 

1184 eod_props, verbose-1) 

1185 if data is None: 

1186 save_subplots = save_subplots.replace('r', '') 

1187 save_subplots = save_subplots.replace('t', '') 

1188 save_subplots = save_subplots.replace('d', '') 

1189 if verbose > 0: 

1190 print('loaded', data_path) 

1191 if len(eod_props) > 0 and not eod_props[0] is None and \ 

1192 'dfreq' in eod_props[0] and data is not None and len(data) > 0: 

1193 psd_data = multi_psd(data[idx0:idx1], rate, 

1194 1.1*eod_props[0]['dfreq'])[0] 

1195 if psd_data is not None and len(psd_data) > 0: 

1196 for idx, fish in zip(wave_indices, wave_eodfs): 

1197 if idx < 0: 

1198 for k in range(len(fish)): 

1199 fish[k,1] = psd_data[np.argmin(np.abs(psd_data[:,0] - fish[k,0])),1] 

1200 if psd_data is None: 

1201 save_subplots = save_subplots.replace('p', '') 

1202 save_subplots = save_subplots.replace('d', '') 

1203 # file name for output files: 

1204 fn = base_name if keep_path else os.path.basename(base_name) 

1205 output_basename = os.path.join(output_folder, fn) 

1206 if channel >= 0: 

1207 output_basename += f'-c{channel}' 

1208 # make directory if necessary: 

1209 if keep_path: 

1210 outpath = os.path.dirname(output_basename) 

1211 if not os.path.exists(outpath): 

1212 if verbose > 0: 

1213 print('mkdir %s' % outpath) 

1214 os.makedirs(outpath) 

1215 # plot: 

1216 if len(save_subplots) == 0 or 'd' in save_subplots: 

1217 fig = plot_eods(os.path.basename(base_name), None, data, rate, 

1218 channel, idx0, idx1, clipped, psd_data, 

1219 wave_eodfs, wave_indices, mean_eods, 

1220 eod_props, peak_data, spec_data, None, unit, 

1221 zoom_window, 10, None, True, all_eods, 

1222 spec_plots, skip_bad, log_freq, min_freq, 

1223 max_freq, interactive=not save_plot, 

1224 verbose=verbose-1) 

1225 if save_plot: 

1226 if multi_pdf is not None: 

1227 multi_pdf.savefig(fig) 

1228 else: 

1229 fig.savefig(output_basename + '.pdf') 

1230 else: 

1231 fig.canvas.manager.set_window_title('thunderfish') 

1232 plt.show() 

1233 plt.close() 

1234 save_subplots = save_subplots.replace('d', '') 

1235 if len(save_subplots) > 0: 

1236 plot_eod_subplots(output_basename, save_subplots, data, rate, 

1237 idx0, idx1, clipped, psd_data, wave_eodfs, 

1238 wave_indices, mean_eods, eod_props, 

1239 peak_data, spec_data, unit, zoom_window, 10, 

1240 None, True, skip_bad, log_freq, min_freq, 

1241 max_freq, save_plot) 

1242 return None 

1243 

1244 

1245def thunderfish(filename, load_kwargs, cfg, channel=0, 

1246 time=None, time_file=False, 

1247 mode='wp', log_freq=False, min_freq=0.0, max_freq=3000, 

1248 save_data=False, zip_file=False, 

1249 all_eods=False, spec_plots='auto', skip_bad=True, 

1250 save_plot=False, multi_pdf=None, save_subplots='', 

1251 output_folder='.', keep_path=False, 

1252 verbose=0, plot_level=0): 

1253 """Automatically detect and analyze all EOD waveforms in a short recording. 

1254 

1255 Parameters 

1256 ---------- 

1257 filename: string 

1258 Path of the data file to be analyzed. 

1259 load_kwargs: dict 

1260 Key-word arguments for the `load_data()` function. 

1261 cfg: dict 

1262 channel: int 

1263 Channel to be analyzed. 

1264 time: string, float, or None 

1265 Start time of analysis window: "beginning", "center", "end", 

1266 "best", or time in seconds (as float or string). If not None 

1267 overwrites "windowPosition" in cofiguration file. 

1268 time_file: bool 

1269 If `True` add time of analysis window to output file names. 

1270 mode: 'w', 'p', 'P', 'wp', or 'wP' 

1271 Analyze wavefish ('w'), all pulse fish ('p'), or largest pulse 

1272 fish only ('P'). 

1273 log_freq: boolean 

1274 Logarithmic (True) or linear (False) frequency axis of 

1275 power spectrum of recording. 

1276 min_freq: float 

1277 Limits of frequency axis of power spectrum of recording 

1278 are set to `(min_freq, max_freq)`, if `max_freq` is greater than zero 

1279 max_freq: float 

1280 Limits of frequency axis of power spectrum of recording 

1281 are set to `(min_freq, max_freq)` and limits of power axis are computed 

1282 from powers below max_freq, if `max_freq` is greater than zero 

1283 save_data: bool 

1284 If True save analysis results in files. If False, just plot the data. 

1285 zip_data: bool 

1286 If True, store all analysis results in a single zip file. 

1287 all_eods: bool 

1288 If True, plot all EOD waveforms. 

1289 spec_plots: bool or 'auto' 

1290 Plot amplitude spectra of EOD waveforms. 

1291 If 'auto', plot them if there is a singel waveform only. 

1292 skip_bad: bool 

1293 Skip harmonic groups without index in the spectrum plot. 

1294 save_plot: bool 

1295 If True, save plots as pdf file. 

1296 multi_pdf: matplotlib.PdfPages or None 

1297 PdfPages instance in which to save plots. 

1298 save_subplots: string 

1299 If not empty, specifies subplots to be saved as separate pdf 

1300 files: r) recording with best window, t) data trace with 

1301 detected pulse fish, p) power spectrum with detected wave 

1302 fish, w/W) mean EOD waveform, s/S) EOD spectrum, e/E) EOD 

1303 waveform and spectra. Capital letters produce a single 

1304 multipage pdf containing plots of all detected fish. 

1305 output_folder: string 

1306 Folder where to save results. 

1307 keep_path: bool 

1308 Add relative path of data files to output path. 

1309 verbose: int 

1310 Verbosity level (for debugging). 

1311 plot_level: int 

1312 Plot intermediate results. 

1313 

1314 Returns 

1315 ------- 

1316 msg: string or None 

1317 In case of errors, an error message. 

1318 """ 

1319 # check data file: 

1320 if len(filename) == 0: 

1321 return 'you need to specify a file containing some data' 

1322 

1323 # file names: 

1324 fn = filename if keep_path else os.path.basename(filename) 

1325 outfilename = os.path.splitext(fn)[0] 

1326 messagefilename = os.path.splitext(fn)[0] + '-message.wav' 

1327 if not os.path.isfile(messagefilename): 

1328 messagefilename = None 

1329 

1330 # load data: 

1331 try: 

1332 all_data, rate, unit, ampl_max = load_data(filename, 

1333 verbose=verbose, 

1334 **load_kwargs) 

1335 except IOError as e: 

1336 return '%s: failed to open file: %s' % (filename, str(e)) 

1337 # select channel: 

1338 channels = all_data.shape[1] 

1339 chan_list = [channel] 

1340 if channel < 0: 

1341 chan_list = range(channels) 

1342 elif channel >= channels: 

1343 return '%s: invalid channel %d (%d channels)' % (filename, channel, channels) 

1344 # process all channels: 

1345 for chan in chan_list: 

1346 raw_data = all_data[:,chan] 

1347 if len(raw_data) <= 1: 

1348 return '%s: empty data file' % filename 

1349 if verbose >= 0 and len(chan_list) > 1: 

1350 print(' channel %d' % chan) 

1351 

1352 # analysis window: 

1353 win_pos = cfg.value('windowPosition') 

1354 if time is not None: 

1355 win_pos = time 

1356 data, idx0, idx1, clipped, min_clip, max_clip = \ 

1357 analysis_window(raw_data, rate, ampl_max, win_pos, cfg, 

1358 plot_level>0) 

1359 found_bestwindow = idx1 > 0 

1360 if not found_bestwindow: 

1361 return '%s: not enough data for requested window length. You may want to adjust the windowSize parameter in the configuration file.' % filename 

1362 

1363 # detect EODs in the data: 

1364 psd_data, wave_eodfs, wave_indices, eod_props, \ 

1365 mean_eods, spec_data, peak_data, power_thresh, skip_reason, zoom_window = \ 

1366 detect_eods(data, rate, min_clip, max_clip, filename, mode, 

1367 verbose, plot_level, cfg) 

1368 if not found_bestwindow: 

1369 wave_eodfs = [] 

1370 wave_indices = [] 

1371 eod_props = [] 

1372 mean_eods = [] 

1373 

1374 # add analysis window to EOD properties: 

1375 for props in eod_props: 

1376 props['twin'] = idx0/rate 

1377 props['window'] = (idx1 - idx0)/rate 

1378 props['winclipped'] = clipped 

1379 

1380 # warning message in case no fish has been found: 

1381 if found_bestwindow and not eod_props : 

1382 msg = ', '.join(skip_reason) 

1383 if msg: 

1384 print(filename + ': no fish found: %s' % msg) 

1385 else: 

1386 print(filename + ': no fish found.') 

1387 

1388 # file name for output files: 

1389 output_basename = os.path.join(output_folder, outfilename) 

1390 if channels > 1: 

1391 if channels > 100: 

1392 output_basename += '-c%03d' % chan 

1393 elif channels > 10: 

1394 output_basename += '-c%02d' % chan 

1395 else: 

1396 output_basename += '-c%d' % chan 

1397 if time_file: 

1398 output_basename += '-t%.0fs' % (idx0/rate) 

1399 # make directory if necessary: 

1400 if keep_path and found_bestwindow: 

1401 outpath = os.path.dirname(output_basename) 

1402 if not os.path.exists(outpath): 

1403 if verbose > 0: 

1404 print('mkdir %s' % outpath) 

1405 os.makedirs(outpath) 

1406 # save results to files: 

1407 if save_data: 

1408 remove_eod_files(output_basename, verbose, cfg) 

1409 if found_bestwindow: 

1410 save_analysis(output_basename, zip_file, eod_props, 

1411 mean_eods, spec_data, peak_data, 

1412 wave_eodfs, wave_indices, unit, verbose, 

1413 **write_table_args(cfg)) 

1414 # summary plots: 

1415 if save_plot or not save_data: 

1416 n_snippets = 10 

1417 if len(save_subplots) == 0 or 'd' in save_subplots: 

1418 chl = chan if channels > 1 else None 

1419 fig = plot_eods(outfilename, messagefilename, 

1420 raw_data, rate, chl, idx0, idx1, 

1421 clipped, psd_data[0], wave_eodfs, 

1422 wave_indices, mean_eods, eod_props, 

1423 peak_data, spec_data, None, unit, 

1424 zoom_window, n_snippets, power_thresh, 

1425 True, all_eods, spec_plots, skip_bad, 

1426 log_freq, min_freq, max_freq, 

1427 interactive=not save_plot, 

1428 verbose=verbose) 

1429 if save_plot: 

1430 if multi_pdf is not None: 

1431 multi_pdf.savefig(fig) 

1432 else: 

1433 fig.savefig(output_basename + '.pdf') 

1434 else: 

1435 fig.canvas.manager.set_window_title('thunderfish') 

1436 plt.show() 

1437 plt.close() 

1438 save_subplots = save_subplots.replace('d', '') 

1439 if len(save_subplots) > 0: 

1440 plot_eod_subplots(output_basename, save_subplots, 

1441 raw_data, rate, idx0, idx1, clipped, 

1442 psd_data[0], wave_eodfs, 

1443 wave_indices, mean_eods, eod_props, 

1444 peak_data, spec_data, unit, 

1445 zoom_window, n_snippets, 

1446 power_thresh, True, skip_bad, 

1447 log_freq, min_freq, max_freq, 

1448 save_plot) 

1449 return None 

1450 

1451 

1452def run_thunderfish(file_args): 

1453 """Helper function for mutlithreading Pool().map(). 

1454 """ 

1455 results = file_args[1][0] 

1456 verbose = file_args[1][-1] if results else file_args[1][-2]+1 

1457 if verbose > 1: 

1458 print('='*70) 

1459 try: 

1460 if results: 

1461 thunderfish_plot(file_args[0], *file_args[1][1:]) 

1462 else: 

1463 if verbose > 0: 

1464 print('analyze recording %s ...' % file_args[0]) 

1465 msg = thunderfish(file_args[0], *file_args[1][1:]) 

1466 if msg: 

1467 print(msg) 

1468 except (KeyboardInterrupt, SystemExit): 

1469 print('\nthunderfish interrupted by user... exit now.') 

1470 sys.exit(0) 

1471 except: 

1472 print(traceback.format_exc()) 

1473 

1474 

1475def main(cargs=None): 

1476 # config file name: 

1477 cfgfile = __package__ + '.cfg' 

1478 

1479 # command line arguments: 

1480 if cargs is None: 

1481 cargs = sys.argv[1:] 

1482 parser = argparse.ArgumentParser(add_help=False, 

1483 description='Analyze EOD waveforms of weakly electric fish.', 

1484 epilog='version %s by Benda-Lab (2015-%s)' % (__version__, __year__)) 

1485 parser.add_argument('-h', '--help', action='store_true', 

1486 help='show this help message and exit') 

1487 parser.add_argument('--version', action='version', version=__version__) 

1488 parser.add_argument('-v', action='count', dest='verbose', default=0, 

1489 help='verbosity level. Increase by specifying -v multiple times, or like -vvv') 

1490 parser.add_argument('-V', action='count', dest='plot_level', default=0, 

1491 help='level for debugging plots. Increase by specifying -V multiple times, or like -VVV') 

1492 parser.add_argument('-c', dest='save_config', action='store_true', 

1493 help='save configuration to file {0} after reading all configuration files'.format(cfgfile)) 

1494 parser.add_argument('--channel', default=0, type=int, 

1495 help='channel to be analyzed (defaults to first channel, negative channel selects all channels)') 

1496 parser.add_argument('-t', dest='time', default=None, type=str, metavar='TIME', 

1497 help='start time of analysis window in recording: "beginning", "center", "end", "best", or time in seconds (overwrites "windowPosition" in cofiguration file)') 

1498 parser.add_argument('-u', dest='unwrap', action='store_true', 

1499 help='unwrap clipped files, toggles unwrap setting of config file.') 

1500 parser.add_argument('-T', dest='time_file', action='store_true', 

1501 help='add start time of analysis file to output file names') 

1502 parser.add_argument('-m', dest='mode', default='wp', type=str, 

1503 choices=['w', 'p', 'wp'], 

1504 help='extract wave "w" and/or pulse "p" fish EODs') 

1505 parser.add_argument('-a', dest='all_eods', action='store_true', 

1506 help='show all EOD waveforms in the summary plot') 

1507 parser.add_argument('-S', dest='spec_plots', action='store_true', 

1508 help='plot spectra for all EOD waveforms in the summary plot') 

1509 parser.add_argument('-b', dest='skip_bad', action='store_false', 

1510 help='indicate bad EODs in legend of power spectrum') 

1511 parser.add_argument('-l', dest='log_freq', type=float, metavar='MINFREQ', 

1512 nargs='?', const=100.0, default=0.0, 

1513 help='logarithmic frequency axis in power spectrum with optional minimum frequency (defaults to 100 Hz)') 

1514 parser.add_argument('-p', dest='save_plot', action='store_true', 

1515 help='save output plots as pdf files') 

1516 parser.add_argument('-M', dest='multi_pdf', default='', type=str, metavar='PDFFILE', 

1517 help='save all summary plots of all recordings in a multi page pdf file. Disables parallel jobs.') 

1518 parser.add_argument('-P', dest='save_subplots', default='', type=str, metavar='rtpwsed', 

1519 help='save subplots as separate pdf files: r) recording with analysis window, t) data trace with detected pulse fish, p) power spectrum with detected wave fish, w/W) mean EOD waveform, s/S) EOD spectrum, e/E) EOD waveform and spectra, d) the default summary plot. Capital letters produce a single multipage pdf containing plots of all detected fish') 

1520 parser.add_argument('-d', dest='rawdata_path', default='.', type=str, metavar='PATH', 

1521 help='path to raw EOD recordings needed for plotting based on analysis results') 

1522 parser.add_argument('-j', dest='jobs', nargs='?', type=int, default=None, const=0, 

1523 help='number of jobs run in parallel. Without argument use all CPU cores.') 

1524 parser.add_argument('-s', dest='save_data', action='store_true', 

1525 help='save analysis results to files') 

1526 parser.add_argument('-z', dest='zip_file', action='store_true', 

1527 help='save analysis results in a single zip file') 

1528 parser.add_argument('-f', dest='format', default='auto', type=str, 

1529 choices=TableData.formats + ['py'], 

1530 help='file format used for saving analysis results, defaults to the format specified in the configuration file or "csv"') 

1531 parser.add_argument('-o', dest='outpath', default='.', type=str, 

1532 help='path where to store results and figures (defaults to current working directory)') 

1533 parser.add_argument('-k', dest='keep_path', action='store_true', 

1534 help='keep path of input file when saving analysis files, i.e. append path of input file to OUTPATH') 

1535 parser.add_argument('-i', dest='load_kwargs', default=[], 

1536 action='append', metavar='KWARGS', 

1537 help='key-word arguments for the data loader function') 

1538 parser.add_argument('file', nargs='*', default='', type=str, 

1539 help='name of a file with time series data of an EOD recording, may include wildcards') 

1540 args = parser.parse_args(cargs) 

1541 

1542 # help: 

1543 if args.help: 

1544 parser.print_help() 

1545 print('') 

1546 print('examples:') 

1547 print('- analyze the single file data.wav interactively:') 

1548 print(' > thunderfish data.wav') 

1549 print('- extract wavefish only:') 

1550 print(' > thunderfish -m w data.wav') 

1551 print('- automatically analyze all wav files in the current working directory and save analysis results and plot to files:') 

1552 print(' > thunderfish -s -p *.wav') 

1553 print('- analyze all wav files in the river1/ directory, use all CPUs, and write files directly to "results/":') 

1554 print(' > thunderfish -j -s -p -o results/ river1/*.wav') 

1555 print('- analyze all wav files in the river1/ directory and write files to "results/river1/":') 

1556 print(' > thunderfish -s -p -o results/ -k river1/*.wav') 

1557 print('- write configuration file:') 

1558 print(' > thunderfish -c') 

1559 parser.exit() 

1560 

1561 # set verbosity level from command line: 

1562 verbose = args.verbose 

1563 plot_level = args.plot_level 

1564 if verbose < plot_level: 

1565 verbose = plot_level 

1566 

1567 # interactive plot: 

1568 plt.rcParams['keymap.quit'] = 'ctrl+w, alt+q, q' 

1569 plt.ioff() 

1570 

1571 # expand wildcard patterns: 

1572 files = [] 

1573 if os.name == 'nt': 

1574 for fn in args.file: 

1575 files.extend(glob.glob(fn)) 

1576 else: 

1577 files = [f for f in args.file if '-message' not in f] 

1578 

1579 # save configuration: 

1580 if args.save_config: 

1581 file_name = files[0] if len(files) else '' 

1582 cfg = configuration() 

1583 cfg.load_files(cfgfile, file_name, 4, verbose) 

1584 save_configuration(cfg, cfgfile) 

1585 exit() 

1586 elif len(files) == 0: 

1587 parser.error('you need to specify at least one file for the analysis') 

1588 

1589 # configure: 

1590 cfg = configuration() 

1591 cfg.load_files(cfgfile, files[0], 4, verbose) 

1592 if args.format != 'auto': 

1593 cfg.set('fileFormat', args.format) 

1594 if args.unwrap: 

1595 cfg.set('unwrapData', not cfg.value('unwrapData')) 

1596 

1597 # plot parameter: 

1598 spec_plots = 'auto' 

1599 if args.spec_plots: 

1600 spec_plots = True 

1601 

1602 # multi-page pdfs: 

1603 multi_pdf = None 

1604 if len(args.multi_pdf) > 0: 

1605 args.save_plot = True 

1606 args.jobs = None # PdfPages does not work yet with mutliprocessing 

1607 ext = os.path.splitext(args.multi_pdf)[1] 

1608 if ext != os.extsep + 'pdf': 

1609 args.multi_pdf += os.extsep + 'pdf' 

1610 multi_pdf = PdfPages(args.multi_pdf) 

1611 

1612 # create output folder: 

1613 if args.save_data or args.save_plot: 

1614 if not os.path.exists(args.outpath): 

1615 if verbose > 1: 

1616 print('mkdir %s' % args.outpath) 

1617 os.makedirs(args.outpath) 

1618 

1619 # kwargs for data loader: 

1620 load_kwargs = {} 

1621 for s in args.load_kwargs: 

1622 for kw in s.split(','): 

1623 kws = kw.split(':') 

1624 if len(kws) == 2: 

1625 load_kwargs[kws[0].strip()] = kws[1].strip() 

1626 

1627 # frequency limits for power spectrum: 

1628 min_freq = 0.0 

1629 max_freq = 3000.0 

1630 log_freq = args.log_freq 

1631 if log_freq > 0.0: 

1632 min_freq = log_freq 

1633 max_freq = min_freq*20 

1634 if max_freq < 2000: 

1635 max_freq = 2000 

1636 log_freq = True 

1637 else: 

1638 log_freq = False 

1639 

1640 # check if all input files are results: 

1641 exts = TableData.ext_formats.values() 

1642 results = True 

1643 # check and group by recording: 

1644 result_files = [] 

1645 for f in sorted(files): 

1646 _, base_name, _, _, ftype, _, ext = parse_filename(f) 

1647 if ext == 'zip' or (ext in exts and ftype in file_types): 

1648 if len(result_files) == 0 or \ 

1649 not result_files[-1][-1].startswith(base_name): 

1650 result_files.append([f]) 

1651 else: 

1652 result_files[-1].append(f) 

1653 else: 

1654 results = False 

1655 break 

1656 if results: 

1657 files = result_files 

1658 

1659 # adjust verbosity: 

1660 v = verbose 

1661 if len(files) > 1: 

1662 v += 1 

1663 

1664 # run on pool: 

1665 pool_args = (results, load_kwargs, cfg, args.channel, args.time, 

1666 args.time_file, args.mode, log_freq, min_freq, 

1667 max_freq, args.save_data, args.zip_file, 

1668 args.all_eods, spec_plots, args.skip_bad, 

1669 args.save_plot, multi_pdf, args.save_subplots, 

1670 args.outpath, args.keep_path, v-1, plot_level) 

1671 if results: 

1672 pool_args = (results, args.rawdata_path, load_kwargs, 

1673 args.all_eods, spec_plots, args.skip_bad, 

1674 args.save_plot, multi_pdf, args.save_subplots, 

1675 log_freq, min_freq, max_freq, args.outpath, 

1676 args.keep_path, v) 

1677 if args.jobs is not None and (args.save_data or args.save_plot) and len(files) > 1: 

1678 cpus = cpu_count() if args.jobs == 0 else args.jobs 

1679 if verbose > 1: 

1680 print('run on %d cpus' % cpus) 

1681 p = Pool(cpus) 

1682 p.map(run_thunderfish, zip(files, [pool_args]*len(files))) 

1683 else: 

1684 list(map(run_thunderfish, zip(files, [pool_args]*len(files)))) 

1685 if multi_pdf is not None: 

1686 multi_pdf.close() 

1687 

1688 

1689if __name__ == '__main__': 

1690 freeze_support() # needed by multiprocessing for some weired windows stuff 

1691 main()